cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A046294 Numbers k such that 2^k contains 2^8=256 as its largest proper substring of the form 2^m.

Original entry on oeis.org

108, 146, 161, 191, 208, 222, 230, 249, 258, 260, 272, 308, 313, 322, 325, 332, 350, 358, 381, 386, 389, 391, 401, 408, 416, 422, 430, 464, 470, 484, 487, 500, 508, 525, 533, 534, 541, 547, 560, 583, 587, 599, 608, 615, 628, 641, 649, 653, 663, 676, 689
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			2^108 = 324518553658426726783156020576{256}.
		

Crossrefs

Cf. A033921.

A046295 Numbers k such that 2^k contains 2^9=512 as its largest proper substring of the form 2^m.

Original entry on oeis.org

109, 135, 192, 209, 221, 223, 231, 241, 259, 266, 277, 283, 285, 293, 302, 305, 309, 314, 323, 333, 344, 345, 359, 382, 387, 400, 402, 407, 409, 413, 415, 421, 431, 443, 451, 472, 476, 485, 501, 509, 526, 529, 537, 540, 548, 551, 556, 561, 566, 573, 574
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			2^135 = 435561429658801233233119497{512}66331066368.
		

Crossrefs

Cf. A033921.

Programs

  • Mathematica
    sub2[n_] := Block[{s = ToString[2^n], k = n - 1}, While[k >= 0 && ! StringContainsQ[s, ToString[2^k]], k--]; k]; Select[Range[574], sub2[#] == 9 &] (* Giovanni Resta, Oct 14 2019 *)

A046297 Numbers k such that 2^k contains 2^11=2048 as its largest proper substring of the form 2^m.

Original entry on oeis.org

103, 267, 279, 287, 404, 503, 511, 515, 657, 685, 745, 763, 883, 890, 922, 946, 973, 991, 1011, 1087, 1114, 1121, 1164, 1197, 1209, 1272, 1274, 1283, 1302, 1316, 1328, 1360, 1378, 1432, 1445, 1478, 1509, 1511, 1542, 1565, 1571, 1584, 1627, 1672, 1678
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			2^103 = 10141{2048}01825835211973625643008.
		

Crossrefs

Cf. A033921.

Programs

  • Mathematica
    sub2[n_] := Block[{s = ToString[2^n], k = n-1}, While[k >= 0 && ! StringContainsQ[ s, ToString[2^k]], k--]; k]; Select[Range[1000], sub2[#] == 11 &] (* Giovanni Resta, Oct 14 2019 *)

A046298 Numbers k such that 2^k contains 2^12=4096 as its largest proper substring of the form 2^m.

Original entry on oeis.org

104, 268, 346, 405, 455, 462, 504, 512, 658, 726, 820, 884, 923, 947, 974, 992, 994, 1012, 1122, 1123, 1132, 1198, 1251, 1278, 1280, 1329, 1356, 1361, 1379, 1411, 1433, 1435, 1446, 1453, 1479, 1498, 1502, 1512, 1543, 1544, 1552, 1572, 1585, 1628, 1665
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			2^104 = 20282{4096}03651670423947251286016.
		

Crossrefs

Cf. A033921.

Programs

  • Mathematica
    sub2[n_] := Block[{s = ToString[2^n], k = n-1}, While[k >= 0 && ! StringContainsQ[s, ToString[2^k]], k--]; k]; Select[Range[1665], sub2[#] == 12 &] (* Giovanni Resta, Oct 14 2019 *)

Extensions

Definition reworded and offset changed to 1 by M. F. Hasler, Oct 11 2019
Previous Showing 11-14 of 14 results.