cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A132004 Expansion of (1 - phi(q^3) / phi(q) * phi(-q^2) * phi(-q^6)) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 1, -1, 2, -1, 0, -1, 1, -2, 0, -1, 2, 0, 2, -1, 2, -1, 0, -2, 0, 0, 0, -1, 3, -2, 1, 0, 2, -2, 0, -1, 0, -2, 0, -1, 2, 0, 2, -2, 2, 0, 0, 0, 2, 0, 0, -1, 1, -3, 2, -2, 2, -1, 0, 0, 0, -2, 0, -2, 2, 0, 0, -1, 4, 0, 0, -2, 0, 0, 0, -1, 2, -2, 3, 0, 0, -2
Offset: 1

Views

Author

Michael Somos, Aug 06 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = x - x^2 + x^3 - x^4 + 2*x^5 - x^6 - x^8 + x^9 - 2*x^10 - x^12 + 2*x^13 + ...
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 85, Equation (32.72).

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, (-1)^(n + #) KroneckerSymbol[ -36, #] &]]; (* Michael Somos, Nov 01 2015 *)
    a[ n_] := If[ n < 1, 0, Times @@ (Which[ # < 5, -(-1)^#, Mod[#, 4] == 3, 1 - Mod[#2, 2], True, #2 + 1] & @@@ FactorInteger @ n)]; (* Michael Somos, Nov 01 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (-1)^(n+d) * kronecker( -36, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - eta(x + A)^2 * eta(x^4 + A) * eta(x^6 + A)^7 / (eta(x^2 + A)^3 * eta(x^3 + A)^2 * eta(x^12 + A)^3)) / 2, n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 1, p==2, -1, p%4==1, e+1, 1-e%2)))};

Formula

Expansion of (1 - eta(q)^2 * eta(q^4) * eta(q^6)^7 / (eta(q^2)^3 * eta(q^3)^2 * eta(q^12)^3)) / 2 in powers of q.
a(n) is multiplicative with a(2^e) = 2*0^e - 1, a(3^e) = 1, a(p^e) = e + 1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4).
G.f.: Sum_{k>0} x^k / (1 + x^k) * Kronecker(-36, k).
a(3*n) = a(n). -2 * a(n) = A132003(n) unless n = 0. a(2*n) = - A035154(n). a(2*n + 1) = A125079(n).
a(n) = (-1)^n * A035154(n). a(12*n + 7) = a(12*n + 11) = 0. - Michael Somos, Nov 01 2015
a(3*n + 1) = A258277(n). a(3*n + 2) = - A258278(n). a(4*n + 1) = A008441(n). a(4*n + 2) = - A125079(n). - Michael Somos, Nov 01 2015
a(6*n) = - A035154(n). a(6*n + 2) = - A122865(n). a(6*n + 4) = - A122856(n). - Michael Somos, Nov 01 2015
a(8*n + 1) = A113407(n). a(8*n + 5) = 2 * A053692(n). - Michael Somos, Nov 01 2015

A281452 Expansion of f(x, x) * f(x^5, x^13) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 2, 0, 0, 2, 1, 2, 0, 0, 4, 0, 0, 0, 1, 4, 0, 2, 2, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 1, 4, 2, 0, 2, 0, 0, 0, 2, 2, 2, 0, 0, 2, 0, 0, 3, 2, 0, 0, 2, 4, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 4, 0, 0, 0, 0, 5, 2, 0, 0, 2, 0, 0, 0, 4, 2, 0, 2, 2, 0, 0, 0, 2, 2
Offset: 0

Views

Author

Michael Somos, Jan 26 2017

Keywords

Examples

			G.f. = 1 + 2*x + 2*x^4 + x^5 + 2*x^6 + 4*x^9 + x^13 + 4*x^14 + 2*x^16 + ...
G.f. = q^4 + 2*q^13 + 2*q^40 + q^49 + 2*q^58 + 4*q^85 + q^121 + 4*q^130 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSum[ 9 n + 4, KroneckerSymbol[ -4, #] &]];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] QPochhammer[ -x^5, x^18] QPochhammer[ -x^13, x^18] QPochhammer[ x^18], {x, 0, n}];
    a[ n_] := If[ n < 0, 0, Times @@ (Which[ # < 3, 1, Mod[#, 4] == 1, #2 + 1, True, (1 + (-1)^#2) / 2] & @@@ FactorInteger[ 9 n + 4])];
  • PARI
    {a(n) = if( n<0, 0, sumdiv(9*n + 4, d, (d%4==1) - (d%4==3)))};
    
  • PARI
    {a(n) = if( n<0, 0, my(m = 9*n + 4, k, s); forstep(j=0, sqrtint(m), 3, if( issquare(m - j^2, &k) && (k%9 == 2 || k%9 == 7), s+=(j>0)+1)); s)};
    
  • PARI
    {a(n) = if( n<0, 0, my(A, p, e); A = factor(9*n + 4); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, 1, p%4==1, e+1, 1-e%2)))};

Formula

f(a,b) = 1 + Sum_{k=1..oo} (ab)^(k(k-1)/2)*(a^k+b^k). - N. J. A. Sloane, Jan 30 2017
Euler transform of a period 36 sequence.
G.f.: (Sum_{k in Z} x^k^2) * (Sum_{k in Z} x^(9*k^2 + 4*k)).
G.f.: Product_{k>0} (1 + x^(2*k-1))^2 * (1 - x^(2*k)) * (1 - x^(18*k-13)) * (1 - x^(18*k-5)) * (1 - x^(18*k)).
a(n) = A122865(3*n + 1) = A122856(6*n + 2) = A258278(6*n + 2). a(n) = - A256269(9^n + 4). 4 * a(n) = A004018(9*n + 4).
2 * a(n) = b(9*n + 4) = with b = A105673, A105673, A122857, A258034, A259761. -2 * a(n) = b(9*n + 4) with b = A138949, A256280, A258292.
a(4*n) = A281453(n). a(8*n + 6) = 2 * A281490(n). a(16*n + 12) = A281451(n).
a(32*n + 4) = 2 * A281492(n). a(64*n + 28) = A281452(n). a(128*n + 60) = 2 * A281491(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/3 = 1.0471975... (A019670). - Amiram Eldar, Jan 20 2025

A281453 Expansion of f(x, x) * f(x^7, x^11) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 1, 2, 2, 0, 3, 2, 0, 0, 2, 4, 0, 0, 0, 2, 0, 0, 2, 0, 2, 0, 2, 0, 0, 0, 0, 3, 2, 0, 0, 6, 0, 0, 0, 1, 4, 0, 2, 2, 0, 0, 2, 2, 4, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 2, 0, 0, 0, 3, 4, 0, 0, 2, 0, 4, 0, 0, 2, 0, 0
Offset: 0

Views

Author

Michael Somos, Jan 26 2017

Keywords

Examples

			G.f. = 1 + 2*x + 2*x^4 + x^7 + 2*x^8 + 2*x^9 + 3*x^11 + 2*x^12 + ...
G.f. = q + 2*q^10 + 2*q^37 + q^64 + 2*q^73 + 2*q^82 + 3*q^100 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSum[ 9 n + 1, KroneckerSymbol[ -4, #] &]];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] QPochhammer[ -x^7, x^18] QPochhammer[ -x^11, x^18] QPochhammer[ x^18], {x, 0, n}];
    a[ n_] := If[ n < 0, 0, Times @@ (Which[# < 3, 1, # == 3, Mod[#2, 2] 2 + 1, Mod[#, 4] == 1, #2 + 1, True, (1 + (-1)^#2) / 2] & @@@ FactorInteger[ 9 n + 1])];
  • PARI
    {a(n) = if( n<0, 0, sumdiv(9*n + 1, d, kronecker(-4, d)))};
    
  • PARI
    {a(n) = if( n<0, 0, my(m = 9*n + 1, k, s); forstep(j=0, sqrtint(m), 3, if( issquare(m - j^2, &k) && (k%9 == 1 || k%9 == 8), s+=(j>0)+1)); s)};
    
  • PARI
    {a(n) = if( n<0, 0, my(A, p, e); A = factor(9*n + 1); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, 1, p==3, -2*(-1)^e, p%4==1, e+1, 1-e%2)))};

Formula

f(a,b) = 1 + Sum_{k=1..oo} (ab)^(k(k-1)/2)*(a^k+b^k). - N. J. A. Sloane, Jan 30 2017
Euler transform of a period 36 sequence.
G.f.: (Sum_{k in Z} x^k^2) * (Sum_{k in Z} x^(9*k^2 + 2*k)).
G.f.: Product_{k>0} (1 + x^(2*k-1))^2 * (1 - x^(2*k)) * (1 + x^(18*k-11)) * (1 + x^(18*k-7)) * (1 - x^(18*k)).
a(4*n + 2) = a(8*n + 5) = a(16*n + 3) = a(32*n + 31) = a(64*n + 55) = a(128*n + 39) = 0.
a(4*n + 3) = A281451(n). a(8*n + 1) = 2 * A281492(n). a(16*n + 7) = A281452(n). a(32*n + 15) = 2 * A281491(n). a(128*n + 103) = 2 * A281490(n).
a(n) = A122865(3*n) = A122856(6*n) = A258278(6*n) = a(64*n + 7). a(n) = -A256269(9*n + 1).
2 * a(n) = b(9*n + 1) where b = A105673, A122857, A258034, A259761. 2 * a(n) = - b(9*n+1) where b = A138949, A256280, A258292. 4 * a(n) = A004018(9*n + 1).
Convolution of A000122 and A205808.
Previous Showing 11-13 of 13 results.