cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A270791 Triangle read by rows: coefficients of polynomials P_n(x) arising from RNA combinatorics.

Original entry on oeis.org

1, 1, 1, 158, 558, 135, 2339, 18378, 13689, 1575, 1354, 18908, 28764, 9660, 675, 617926, 13447818, 34604118, 23001156, 4534875, 218295, 525206428, 16383145284, 63886133214, 70424606988, 26926791930, 3567422250, 127702575, 50531787, 2134308548, 11735772822, 19350632598, 12106771137, 3063221550, 295973325, 8292375
Offset: 1

Views

Author

N. J. A. Sloane, Mar 28 2016

Keywords

Comments

"... polynomials like these with nonnegative integral coefficients might reasonably be expected to be generating polynomials for some as yet unknown fatgraph structure."

Examples

			For n = 3 we have P_3(x) = 158*x^2 + 558*x + 135.
For n = 4 we have P_4(x) = 2339*x^3 + 18378*x^2 + 13689*x + 1575.
Triangle begins:
n\k  [1]        [2]        [3]        [4]        [5]        [6]
[1]  1;
[2]  1,         1;
[3]  158        558,       135;
[4]  2339,      18378,     13689,     1575;
[5]  1354,      18908,     28764,     9660,      675;
[6]  617926,    13447818,  34604118,  23001156,  4534875,   218295;
[7]  ...
		

Crossrefs

Programs

  • PARI
    G = 8; N = 3*G + 1; F = 1; gmax(n) = min(n\2, G);
    Q = matrix(N+1, G+1); Qn() = (matsize(Q)[1] - 1);
    Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
    Qset(n, g, v) = { Q[n+1, g+1] = v };
    Quadric({x=1}) = {
      Qset(0, 0, x);
      for (n = 1, Qn(), for (g = 0, gmax(n),
        my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
           t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
           t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
           (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
        Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
    };
    Quadric('x + O('x^(F+1)));
    Kol(g) = vector(Qn()+2-F-2*g, n, polcoeff(Qget(n+F-2 + 2*g, g), F, 'x));
    P(g) = {
      my(x = 'x + O('x^(G+2)));
      return(Pol(Ser(Kol(g)) * (1-4*x)^(3*g-1/2), 'x));
    };
    concat(vector(G, g, Vec(P(g) / content(P(g)))))  \\ Gheorghe Coserea, Apr 17 2016

Formula

The g.f. for column g>0 of triangle A035309 is x^(2*g) * A270790(g) * P_g(x) / (1-4*x)^(3*g-1/2), where P_g(x) is the polynomial associated with row g of the triangle. - Gheorghe Coserea, Apr 17 2016

Extensions

More terms from Gheorghe Coserea, Apr 17 2016
Previous Showing 11-11 of 11 results.