cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A294668 Expansion of Product_{k>=1} 1/(1 - x^(2*k-1))^(k*(3*k+1)/2).

Original entry on oeis.org

1, 2, 3, 11, 19, 42, 93, 170, 352, 658, 1266, 2351, 4316, 7926, 14146, 25458, 44748, 78687, 136747, 235988, 405139, 689108, 1168260, 1963940, 3289950, 5474700, 9070976, 14954802, 24537752, 40099905, 65225553, 105713691, 170600344, 274367688, 439568770, 701867457
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 06 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1 - x^(2*k-1))^(k*(3*k+1)/2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2*Pi * n^(3/4) / (3*5^(1/4)) + 2*Zeta(3) * sqrt(5*n) / Pi^2 + 5^(1/4)*(5*Pi/48 - 20*Zeta(3)^2 / Pi^5) * n^(1/4) + 800 * Zeta(3)^3 / (3*Pi^8) - 73*Zeta(3) / (96*Pi^2) - 1/12) * A / (2^(115/48) * 5^(5/48) * Pi^(1/12) * n^(29/48)), where A is the Glaisher-Kinkelin constant A074962.

A294778 Expansion of Product_{k>=1} 1/(1 - x^(2*k-1))^(k*(k-1)/2).

Original entry on oeis.org

1, 0, 0, 1, 0, 3, 1, 6, 3, 11, 12, 18, 29, 33, 69, 67, 138, 141, 275, 306, 516, 656, 972, 1353, 1828, 2712, 3477, 5280, 6654, 10038, 12756, 18789, 24369, 34796, 46167, 63990, 86629, 117189, 160698, 213984, 295092, 389517, 536683, 706590, 968289, 1276310
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 08 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1-x^(2*k-1))^(k*(k-1)/2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2*Pi * n^(3/4) / (3^(5/4) * 5^(1/4)) - 5^(1/4) * Pi * n^(1/4) / (16*3^(3/4)) + 3*Zeta(3) / (32*Pi^2)) / (2^(31/16) * 15^(1/8) * n^(5/8)).
Previous Showing 21-22 of 22 results.