A307486 a(0) = 3; a(n) = smallest k > 1 such that 1 + a(0)*a(1)*...*a(n-1)*k is composite.
3, 3, 3, 2, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0
Keywords
Programs
-
Mathematica
a[0] = 3; a[n_] := a[n] = Module[{k = 2, p = Product[a[i], {i, 0, n - 1}]}, While[PrimeQ[1 + p*k], k++]; k]; Array[a, 100, 0] (* Amiram Eldar, Apr 10 2019 *)
-
PARI
p=1; for (n=0, 100, for (k=2, oo, if (!isprime(1+p*k), print1 (k", "); p*=k; break))) \\ Rémy Sigrist, Apr 23 2019
Extensions
More terms from Amiram Eldar, Apr 10 2019
Comments