cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A226325 Integers of the form n/tau(n)^2 as n runs through the integers, where tau(n) is the number of divisors of n.

Original entry on oeis.org

1, 1, 2, 25, 3, 2, 5, 9, 25, 81, 6, 4, 16, 3, 5, 28, 36, 12, 128, 81, 81, 24, 7, 40, 8, 21, 28, 50, 12, 11, 16, 12, 96, 49, 13, 35, 44, 2401, 52, 45, 17, 36, 19, 160, 225, 68, 63, 23, 76, 30, 28, 36, 72, 21, 224, 92, 29, 77, 121, 31, 18, 27, 30, 91, 99, 116, 128, 37, 124
Offset: 1

Views

Author

Alex Ratushnyak, Jun 04 2013

Keywords

Examples

			A046754(3) = 128, A000005(128) = 8, so a(3) = 128 / 8^2 = 2.
		

Crossrefs

Cf. A036762 (if d(n) divides n, then n/d(n) is appended to the sequence).

Programs

  • Maple
    for n from 1 to 1000000 do
        r := n/(numtheory[tau](n))^2 ;
        if type(r,'integer') then
            printf("%d,",r);
        end if;
    end do: # R. J. Mathar, Jun 07 2013
  • Mathematica
    Select[Table[n/DivisorSigma[0,n]^2,{n,10^6}],IntegerQ] (* Harvey P. Dale, Jan 01 2015 *)

Formula

a(n) = A046754(n) / A000005(A046754(n))^2.

A374540 a(1) = 0; for n >= 2, a(n) is the number of iterations needed for the map x -> x/A000005(x) to reach a least integer, when starting from x = A033950(n).

Original entry on oeis.org

0, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Ctibor O. Zizka, Jul 11 2024

Keywords

Comments

The refactorability "depth" for refactorable numbers. Numbers from A159973 have the refactorability "depth" 0. Records reached for A033950(A360806(n)), i.e. the growth of the sequence is very slow.

Examples

			n = 2: A033950(2) = 2, 2/A000005(2) = 1, thus a(2) = 1.
n = 3: A033950(3) = 8, 8/A000005(8) = 2 --> 2/A000005(2) = 1, thus a(3) = 2.
n = 13: A033950(13) = 80, 80/A000005(80) = 8 --> 8/A000005(8) = 2 --> 2/A000005(2) = 1, thus a(13) = 3.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{v = NestWhileList[# / DivisorSigma[0, #] &, n, IntegerQ[#] && # > 1 &], len}, len = Length[v]; If[IntegerQ[v[[2]]], If[v[[-1]] == 1, len - 1, len - 2], Nothing]]; f[1] = 0; Array[f, 1200] (* Amiram Eldar, Jul 11 2024 *)
Previous Showing 11-12 of 12 results.