cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A164338 Conway's creeper sequence.

Original entry on oeis.org

12334444, 55667777, 123334444, 556667777, 1233334444, 5566667777, 12333334444, 55666667777, 123333334444, 556666667777, 1233333334444, 5566666667777, 12333333334444, 55666666667777, 123333333334444
Offset: 1

Views

Author

David W. Wilson, Aug 13 2009

Keywords

Comments

Trajectory of 12334444 under the RATS function A036839.
John Conway calls this sequence "the creeper" and conjectures that the RATS trajectory of every n >= 1 eventually enters a cycle or the creeper. David Wilson confirms this conjecture for n <= 10^10.
Continues with the obvious digital pattern.
Since a(n+2) = a(n) except for an added digit, this sequence can be described as a quasi-cycle of period 2 with smallest element 12334444. This is how it is treated in related sequences such as A161590, A161592 and A161593.

Crossrefs

Cf. A036839 (RATS function), A161590, A161592, A161593.

Programs

  • Haskell
    a164338 n = a164338_list !! (n-1)
    a164338_list = iterate a036839 12334444
    -- Reinhard Zumkeller, Mar 14 2012

Formula

a(n+2) = 10 a(n) - 9996 (n odd)
a(n+2) = 10 a(n) - 9993 (n even)
a(n+4) = 11 a(n+2) - 10 a(n)
a(n + 1) = A036839(a(n)). [Reinhard Zumkeller, Mar 14 2012]
G.f.: x*(-55677770*x^3 - 12344440*x^2 + 55667777*x + 12334444)/(10*x^4 - 11*x^2 + 1). - Chai Wah Wu, Feb 08 2020

A288535 Array RATS(b,n) by upward antidiagonals: Reverse Add Then Sort digits of n>0 in base b>1.

Original entry on oeis.org

1, 2, 3, 2, 4, 3, 2, 1, 4, 3, 2, 4, 6, 8, 3, 2, 4, 6, 5, 4, 3, 2, 4, 1, 8, 10, 8, 7, 2, 4, 6, 8, 6, 15, 4, 3, 2, 4, 6, 8, 10, 12, 5, 14, 3, 2, 4, 6, 1, 10, 7, 18, 10, 4, 15, 2, 4, 6, 8, 10, 12, 14, 24, 15, 8, 3, 2, 4, 6, 8, 10, 12, 8, 21, 6, 5, 4, 15, 2, 4, 6
Offset: 2

Views

Author

Andrey Zabolotskiy, Jun 11 2017

Keywords

Examples

			17 in base 3 is 122, 122+221=1120->112 which is 14 in decimal, thus RATS(3,17)=14.
The array begins:
1, 3, 3, 3,  3,  3,  7, ...
2, 4, 4, 8,  4,  8,  4, ...
2, 1, 6, 5, 10, 15,  5, ...
2, 4, 6, 8,  6, 12, 18, ...
2, 4, 1, 8, 10,  7, 14, ...
		

Crossrefs

Programs

  • Mathematica
    rats[n_, b_: 10] := FromDigits[Sort[IntegerDigits[n + FromDigits[Reverse[IntegerDigits[n, b]], b], b]], b];
    Flatten[Table[rats[n, s + 2 - n], {s, 20}, {n, s}]]

A275218 Numbers in 2-cycles of RATS sequences.

Original entry on oeis.org

78, 117, 156, 288, 11127, 11667, 23388, 27888, 111177, 228888, 111111777, 222888888, 1111122267, 3333337788, 111111117777, 222288888888, 111111111177777, 222228888888888, 111111111111777777, 222222888888888888
Offset: 1

Views

Author

Robert Israel, Jul 20 2016

Keywords

Comments

Numbers n such that A036839(A036839(n)) = n.
Subset of A161596.
Contains A002275(3*k) + 6*A002275(k) and 2*A002275(3*k)+6*A002275(2*k) for all k>0.
In particular, this sequence and A161596 are infinite.
Do all sufficiently large members of the sequence have the form A002275(3*k) + 6*A002275(k) or 2*A002275(3*k)+6*A002275(2*k)?

Examples

			78 is in the sequence because A036839(78) = 156 and A036839(156) = 78.
		

Crossrefs

Programs

  • Maple
    rev:= proc(n) local t,L;
       L:= convert(n,base,10);
       add(10^j*L[-1-j],j=0..nops(L)-1)
    end proc:
    sord:= proc(n) local L,t;
      L:= sort(convert(n,base,10),`>`);
      add(10^j*L[1+j],j=0..nops(L)-1)
    end proc:
    rats:= proc(n) option remember;  sord(n + rev(n)) end proc:
    Res:= NULL:
    for d from 1 to 15 do
      for x1 from 0 to d do
        for x2 from 0 to d-x1 do
          for x3 from 0 to d-x1-x2 do
             for x4 from 0 to d-x1-x2-x3 do
               for x5 from 0 to d-x1-x2-x3-x4 do
                 for x6 from 0 to d-x1-x2-x3-x4-x5 do
                   for x7 from 0 to d-x1-x2-x3-x4-x5-x6 do
                     for x8 from 0 to d-x1-x2-x3-x4-x5-x6-x7 do
                       x9:= d-x1-x2-x3-x4-x5-x6-x7-x8;
                       L:= [1$x1,2$x2,3$x3,4$x4,5$x5,6$x6,7$x7,8$x8,9$x9];
                       x:= add(L[-i]*10^(i-1),i=1..d);
                       if rats(rats(x)) = x then Res:= Res,x fi
    od od od od od od od od od:
    sort([Res]);
Previous Showing 21-23 of 23 results.