A323189
Number of n-step point-symmetrical self-avoiding walks on the square lattice.
Original entry on oeis.org
4, 4, 12, 12, 36, 36, 100, 100, 284, 276, 780, 764, 2148, 2084, 5868, 5692, 15956, 15436, 43300, 41812, 117100, 112916, 316076, 304524, 851612, 819372, 2290932, 2203132, 6154284, 5912572, 16514988, 15859820, 44268460, 42480972, 118562580, 113738396, 317268516
Offset: 1
A151538
Number of 1-sided strip polyedges with n cells.
Original entry on oeis.org
1, 2, 6, 14, 40, 102, 284, 752, 2069, 5547, 15134, 40712, 110456, 297066, 802808, 2156378, 5810329, 15584271, 41894990, 112217372, 301115391, 805584175, 2158366236, 5768337730, 15435275815, 41214200699, 110164972820, 293922598172, 784925297952, 2092745480990, 5584229143243
Offset: 1
A323188
Number of n-step mirror-symmetrical self-avoiding walks on the square lattice.
Original entry on oeis.org
4, 12, 12, 28, 28, 76, 76, 188, 196, 516, 524, 1292, 1356, 3500, 3596, 8908, 9380, 23940, 24796, 61500, 64900, 164612, 171244, 424940, 449140, 1134772, 1184204, 2939212, 3109644, 7834764, 8196100, 20345316, 21539420, 54156316, 56762036, 140908948, 149255908
Offset: 1
A334756
Irregular table read by rows: T(n,k) is the number of 2n-step closed self-avoiding paths on a 2D square lattice with area k, where k >= n-1.
Original entry on oeis.org
0, 8, 24, 96, 16, 360, 160, 40, 1320, 960, 528, 144, 24, 4872, 4704, 3752, 2016, 840, 224, 56, 18112, 21632, 20992, 15424, 9920, 4832, 2176, 704, 192, 32, 67248, 96192, 107712, 93312, 75096, 50112, 31104, 16416, 7848, 3168, 1080, 288, 72
Offset: 1
For n = 2, total steps = 4, there are 8 different paths with an area of 1. These are the 8 possible ways to walk the polygon:
+---+
| |
+---+
.
For n = 3, total steps = 6, there are 24 different paths with an area of 2. These are the 24 possible ways to walk the polygon:
+---+---+
| |
+---+---+
.
For n = 4, total steps = 8, there are 96 different paths with an area of 3 and 16 different paths with an area of 4. These are the possible ways to walk the polygons:
+---+ +---+---+
| | | |
+ +---+ + +
| | | |
+---+---+ for area = 3 +---+---+ for area = 4
.
For n = 5, total steps = 10, there are 360 different paths with an area of 4, 160 paths with an area of 5 and 40 different paths with an area of 6. These are the possible ways to walk the polygons:
+---+---+---+---+ +---+ +---+ +---+---+
| | | | | | | |
+---+---+---+---+ + +---+---+ +---+ +---+ +---+ +---+
| | | | | |
+---+---+---+ +---+---+---+ +---+---+ for area = 4
.
+---+---+ +---+---+---+
| | | |
+ +---+ + +
| | | |
+---+---+---+ for area = 5 +---+---+---+ for area = 6
.
Table begins:
0;
8;
24;
96,16;
360,160,40;
1320,960,528,144,24;
4872,4704,3752,2016,840,224,56;
18112,21632,20992,15424,9920,4832,2176,704,192,32;
67248,96192,107712,93312,75096,50112,31104,16416,7848,3168,1080,288,72;
249480,415040,526400,514480,468680,373280,281280,189920,120400,69120,36560,17040,7480,2720,880,240,40;
Row sums = A010566.
- A. J. Guttmann and I. G. Enting, The size and number of rings on the square lattice, J. Phys. A 21 (1988), L165-L172.
- Brian Hayes, How to avoid yourself, American Scientist 86 (1998) 314-319.
- B. J. Hiley and M. F. Sykes, Probability of initial ring closure in the restricted random-walk model of a macromolecule, J. Chem. Phys., 34 (1961), 1531-1537.
- Iwan Jensen, Series Expansions for Self-Avoiding Walks
- G. S. Rushbrooke and J. Eve, On Noncrossing Lattice Polygons, Journal of Chemical Physics, 31 (1959), 1333-1334.
- Scott R. Shannon, Data for n=1..12.
A002976
Number of certain self-avoiding walks with n steps on square lattice (see reference for precise definition).
Original entry on oeis.org
0, 1, 0, 2, 0, 5, 9, 21, 42, 76, 174, 396, 888, 2023, 4345, 9921, 22566
Offset: 4
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A151537
Number of 1-sided polyedges with n edges.
Original entry on oeis.org
1, 2, 7, 25, 99, 416, 1854, 8411, 38980, 182829, 867096, 4145168, 19955321, 96619260, 470157772
Offset: 1
Comments