cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A068023 Z(S_m; sigma[1](n), sigma[2](n),..., sigma[m](n)) where Z(S_m; x_1,x_2,...,x_m) is the cycle index of the symmetric group S_m and sigma[k](n) is the sum of k-th powers of divisors of n; m=6.

Original entry on oeis.org

1, 127, 1093, 10795, 19531, 164809, 137257, 788035, 896260, 2745247, 1948717, 15172249, 5229043, 18728221, 22858948, 53743987, 25646167, 142560946, 49659541, 244930015, 157475284, 258931921, 154764793, 1151073625, 317886556
Offset: 1

Views

Author

Vladeta Jovovic, Feb 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    CIP6 = CycleIndexPolynomial[SymmetricGroup[6], Array[x, 6]]; a[n_] := CIP6 /. x[k_] -> DivisorSigma[k, n]; Array[a, 25] (* Jean-François Alcover, Nov 04 2016 *)

Formula

1/6!*(sigma[1](n)^6 + 15*sigma[1](n)^4*sigma[2](n) + 40*sigma[1](n)^3*sigma[3](n) + 45*sigma[1](n)^2*sigma[2](n)^2 + 90*sigma[1](n)^2*sigma[4](n) + 120*sigma[1](n)*sigma[2](n)*sigma[3](n) + 15*sigma[2](n)^3 + 144*sigma[1](n)*sigma[5](n) + 90*sigma[2](n)*sigma[4](n) + 40*sigma[3](n)^2 + 120*sigma[6](n)).
Agrees with A038994 at n = 1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23... - Ralf Stephan, Mar 09 2004

A128119 Square array T(n,m) read by antidiagonals: number of sublattices of index m in generic n-dimensional lattice.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 4, 1, 1, 15, 13, 7, 1, 1, 31, 40, 35, 6, 1, 1, 63, 121, 155, 31, 12, 1, 1, 127, 364, 651, 156, 91, 8, 1, 1, 255, 1093, 2667, 781, 600, 57, 15, 1, 1, 511, 3280, 10795, 3906, 3751, 400, 155, 13, 1, 1, 1023, 9841, 43435, 19531, 22932, 2801, 1395, 130, 18, 1
Offset: 1

Views

Author

Ralf Stephan, May 09 2007

Keywords

Comments

Differs from sum of divisors of m^(n-1) in 4th column!

Examples

			Array starts:
1,1,1,1,1,1,1,1,1,
1,3,4,7,6,12,8,15,13,
1,7,13,35,31,91,57,155,130,
1,15,40,155,156,600,400,1395,1210,
1,31,121,651,781,3751,2801,11811,11011,
1,63,364,2667,3906,22932,19608,97155,99463,
1,127,1093,10795,19531,138811,137257,788035,896260,
1,255,3280,43435,97656,836400,960800,6347715,8069620,
		

References

  • Günter Scheja, Uwe Storch, Lehrbuch der Algebra, Teil 2. BG Teubner, Stuttgart, 1988. [§63, Aufg. 13]

Crossrefs

Programs

  • Mathematica
    T[n_, m_] := If[m == 1, 1, Product[{p, e} = pe; (p^(e+j)-1)/(p^j-1), {pe, FactorInteger[m]}, {j, 1, n-1}]];
    Table[T[n-m+1, m], {n, 1, 11}, {m, 1, n}] // Flatten (* Jean-François Alcover, Dec 10 2018 *)
  • PARI
    T(n,m)=local(k,v);v=factor(m);k=matsize(v)[1];prod(i=1,k,prod(j=1,n-1,(v[i,1]^(v[i,2]+j)-1)/(v[i,1]^j-1)))

Formula

Dirichlet g.f. of n-th row: Product_{i=0..n-1} zeta(s-i).
If m is squarefree, T(n,m) = A000203(m^(n-1)). - Álvar Ibeas, Jan 17 2015
T(n, Product(p^e)) = Product(Gaussian_poly[e+n-1, e]p). - _Álvar Ibeas, Oct 31 2015

Extensions

Edited by Charles R Greathouse IV, Oct 28 2009
Previous Showing 11-12 of 12 results.