A272859 Numbers m such that sigma(Product(p_j)) = sigma(Product(e_j)), where m = Product((p_i)^e_i) and sigma = A000203.
1, 4, 27, 72, 108, 192, 800, 1458, 3125, 5120, 6144, 6272, 10976, 12500, 21600, 30375, 36000, 48600, 54675, 77760, 84375, 114688, 116640, 121500, 134456, 138240, 169344, 173056, 225000, 229376, 247808, 337500, 354294, 384000, 395136, 600000, 653184, 655360, 703125, 750141, 823543, 857304, 913952, 979776
Offset: 1
Keywords
Examples
173056 is included because 173056 = 2^10 * 13^2 and sigma(2*13) = sigma(10*2). 653184 is included because 653184 = 2^7 * 3^6 * 7 and sigma(2*3*7) = sigma(7*6*1).
Links
- Giuseppe Coppoletta and Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 100 terms from G. Coppoletta)
Programs
-
Mathematica
Select[Range[10^6], First@ # == Last@ # &@ Map[DivisorSigma[1, Times @@ #] &, Transpose@ FactorInteger@ #] &] (* Michael De Vlieger, May 12 2016 *)
-
Sage
A272859 = [] for n in (1..10000): v = factor(n) if prod(1 + w[0] for w in v) == sigma(prod(w[1] for w in v)): A272859.append(n) print(A272859)
Comments