cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A325487 One of the four successive approximations up to 13^n for the 13-adic integer 6^(1/4). This is the 4 (mod 5) case (except for n = 0).

Original entry on oeis.org

0, 4, 4, 4, 379, 1004, 10379, 26004, 104129, 1276004, 9088504, 28619754, 126276004, 614557254, 3055963504, 27470026004, 57987604129, 57987604129, 820927057254, 16079716119754, 16079716119754, 206814579401004, 1637326054010379, 6405697636041629, 30247555546197879
Offset: 0

Views

Author

Jianing Song, Sep 07 2019

Keywords

Comments

For n > 0, a(n) is the unique number k in [1, 5^n] and congruent to 4 mod 5 such that k^4 - 6 is divisible by 5^n.
For k not divisible by 5, k is a fourth power in 5-adic field if and only if k == 1 (mod 5). If k is a fourth power in 5-adic field, then k has exactly 4 fourth-power roots.

Examples

			The unique number k in [1, 5^2] and congruent to 4 modulo 5 such that k^4 - 6 is divisible by 5^2 is k = 4, so a(2) = 4.
The unique number k in [1, 5^3] and congruent to 4 modulo 5 such that k^4 - 6 is divisible by 5^3 is also k = 4, so a(3) is also 4.
		

Crossrefs

Approximations of p-adic fourth-power roots:
A325484, A325485, A325486, this sequence (5-adic, 6^(1/4));
A324077, A324082, A324083, A324084 (13-adic, 3^(1/4)).

Programs

  • PARI
    a(n) = lift(-sqrtn(6+O(5^n), 4))

Formula

a(n) = A325485(n)*A048898(n) mod 5^n = A325486(n)*A048899(n) mod 5^n.
For n > 0, a(n) = 5^n - A325484(n).
a(n)^2 == A324023(n) (mod 5^n).

A318960 One of the two successive approximations up to 2^n for 2-adic integer sqrt(-7). This is the 1 (mod 4) case.

Original entry on oeis.org

1, 5, 5, 21, 53, 53, 181, 181, 181, 181, 181, 181, 181, 16565, 49333, 49333, 49333, 49333, 573621, 1622197, 1622197, 1622197, 10010805, 10010805, 10010805, 77119669, 211337397, 479772853, 479772853, 479772853, 2627256501, 6922223797, 15512158389, 15512158389
Offset: 2

Views

Author

Jianing Song, Sep 06 2018

Keywords

Comments

a(n) is the unique number k in [1, 2^n] and congruent to 1 (mod 4) such that k^2 + 7 is divisible by 2^(n+1).
The 2-adic integers are very different from p-adic ones where p is an odd prime. For example, provided that there is at least one solution, the number of solutions to x^n = a over p-adic integers is gcd(n, p-1) for odd primes p and gcd(n, 2) for p = 2. For odd primes p, x^2 = a is solvable iff a is a quadratic residue modulo p, while for p = 2 it's solvable iff a == 1 (mod 8). If gcd(n, p-1) > 1 and gcd(a, p) = 1, then the solutions to x^n = a differ starting at the rightmost digit for odd primes p, while for p = 2 they differ starting at the next-to-rightmost digit. As a result, the formulas and the program here are different from those in other entries related to p-adic integers.

Examples

			The unique number k in [1, 4] and congruent to 1 modulo 4 such that k^2 + 7 is divisible by 8 is 1, so a(2) = 1.
a(2)^2 + 7 = 8 which is not divisible by 16, so a(3) = a(2) + 2^2 = 5.
a(3)^2 + 7 = 32 which is divisible by 32, so a(4) = a(3) = 5.
a(4)^2 + 7 = 32 which is divisible by 64, so a(5) = a(4) + 2^4 = 21.
a(5)^2 + 7 = 448 which is divisible by 128, so a(6) = a(5) + 2^5 = 53.
...
		

Crossrefs

Cf. A318962.
Expansions of p-adic integers:
this sequence, A318961 (2-adic, sqrt(-7));
A268924, A271222 (3-adic, sqrt(-2));
A268922, A269590 (5-adic, sqrt(-4));
A048898, A048899 (5-adic, sqrt(-1));
A290567 (5-adic, 2^(1/3));
A290568 (5-adic, 3^(1/3));
A290800, A290802 (7-adic, sqrt(-6));
A290806, A290809 (7-adic, sqrt(-5));
A290803, A290804 (7-adic, sqrt(-3));
A210852, A212153 (7-adic, (1+sqrt(-3))/2);
A290557, A290559 (7-adic, sqrt(2));
A286840, A286841 (13-adic, sqrt(-1));
A286877, A286878 (17-adic, sqrt(-1)).
Also expansions of 10-adic integers:
A007185, A010690 (nontrivial roots to x^2-x);
A216092, A216093, A224473, A224474 (nontrivial roots to x^3-x).

Programs

  • PARI
    a(n) = truncate(-sqrt(-7+O(2^(n+1))))

Formula

a(2) = 1; for n >= 3, a(n) = a(n-1) if a(n-1)^2 + 7 is divisible by 2^(n+1), otherwise a(n-1) + 2^(n-1).
a(n) = 2^n - A318961(n).
a(n) = Sum_{i=0..n-1} A318962(i)*2^i.

Extensions

Offset corrected by Jianing Song, Aug 28 2019

A318961 One of the two successive approximations up to 2^n for 2-adic integer sqrt(-7). This is the 3 (mod 4) case.

Original entry on oeis.org

3, 3, 11, 11, 11, 75, 75, 331, 843, 1867, 3915, 8011, 16203, 16203, 16203, 81739, 212811, 474955, 474955, 474955, 2572107, 6766411, 6766411, 23543627, 57098059, 57098059, 57098059, 57098059, 593968971, 1667710795, 1667710795, 1667710795, 1667710795, 18847579979
Offset: 2

Views

Author

Jianing Song, Sep 06 2018

Keywords

Comments

a(n) is the unique number k in [1, 2^n] and congruent to 3 (mod 4) such that k^2 + 7 is divisible by 2^(n+1).
The 2-adic integers are very different from p-adic ones where p is an odd prime. For example, provided that there is at least one solution, the number of solutions to x^n = a over p-adic integers is gcd(n, p-1) for odd primes p and gcd(n, 2) for p = 2. For odd primes p, x^2 = a is solvable iff a is a quadratic residue modulo p, while for p = 2 it's solvable iff a == 1 (mod 8). If gcd(n, p-1) > 1 and gcd(a, p) = 1, then the solutions to x^n = a differ starting at the rightmost digit for odd primes p, while for p = 2 they differ starting at the next-to-rightmost digit. As a result, the formulas and the program here are different from those in other entries related to p-adic integers.

Examples

			The unique number k in [1, 4] and congruent to 3 modulo 4 such that k^2 + 7 is divisible by 8 is 3, so a(2) = 3.
a(2)^2 + 7 = 16 which is divisible by 16, so a(3) = a(2) = 3.
a(3)^2 + 7 = 16 which is not divisible by 32, so a(4) = a(3) + 2^3 = 11.
a(4)^2 + 7 = 128 which is divisible by 64, so a(5) = a(4) = 11.
a(5)^2 + 7 = 128 which is divisible by 128, so a(6) = a(5) = 11.
...
		

Crossrefs

Cf. A318963.
Expansions of p-adic integers:
A318960, this sequence (2-adic, sqrt(-7));
A268924, A271222 (3-adic, sqrt(-2));
A268922, A269590 (5-adic, sqrt(-4));
A048898, A048899 (5-adic, sqrt(-1));
A290567 (5-adic, 2^(1/3));
A290568 (5-adic, 3^(1/3));
A290800, A290802 (7-adic, sqrt(-6));
A290806, A290809 (7-adic, sqrt(-5));
A290803, A290804 (7-adic, sqrt(-3));
A210852, A212153 (7-adic, (1+sqrt(-3))/2);
A290557, A290559 (7-adic, sqrt(2));
A286840, A286841 (13-adic, sqrt(-1));
A286877, A286878 (17-adic, sqrt(-1)).
Also expansions of 10-adic integers:
A007185, A010690 (nontrivial roots to x^2-x);
A216092, A216093, A224473, A224474 (nontrivial roots to x^3-x).

Programs

  • PARI
    a(n) = if(n==2, 3, truncate(sqrt(-7+O(2^(n+1)))))

Formula

a(2) = 3; for n >= 3, a(n) = a(n-1) if a(n-1)^2 + 7 is divisible by 2^(n+1), otherwise a(n-1) + 2^(n-1).
a(n) = 2^n - A318960(n).
a(n) = Sum_{i=0..n-1} A318963(i)*2^i.

Extensions

Offset corrected by Jianing Song, Aug 28 2019

A324027 One of the two successive approximations up to 5^n for 5-adic integer sqrt(-6). This is the 2 (mod 5) case (except for n = 0).

Original entry on oeis.org

0, 2, 12, 37, 162, 1412, 10787, 42037, 354537, 1526412, 3479537, 3479537, 3479537, 247620162, 3909729537, 10013245162, 101565979537, 711917542037, 2237796448287, 13681888245162, 51828860901412, 337931155823287, 1291605472229537, 10828348636292037, 58512064456604537
Offset: 0

Views

Author

Jianing Song, Sep 07 2019

Keywords

Comments

For n > 0, a(n) is the unique solution to x^2 == -6 (mod 5^n) in the range [0, 5^n - 1] and congruent to 2 modulo 5.
A324028 is the approximation (congruent to 3 mod 5) of another square root of 6 over the 5-adic field.

Examples

			12^2 = 144 = 6*5^2 - 6;
37^2 = 1369 = 11*5^3 - 6;
162^2 = 26244 = 42*5^4 - 6.
		

Crossrefs

Approximations of 5-adic square roots:
this sequence, A324028 (sqrt(-6));
A268922, A269590 (sqrt(-4));
A048898, A048899 (sqrt(-1));
A324023, A324024 (sqrt(6)).

Programs

  • PARI
    a(n) = truncate(sqrt(-6+O(5^n)))

Formula

For n > 0, a(n) = 5^n - A324028(n).
a(n) = A048898(n)*A324023(n) mod 5^n = A048899(n)*A324024(n) mod 5^n.

A324028 One of the two successive approximations up to 5^n for 5-adic integer sqrt(-6). This is the 3 (mod 5) case (except for n = 0).

Original entry on oeis.org

0, 3, 13, 88, 463, 1713, 4838, 36088, 36088, 426713, 6286088, 45348588, 240661088, 973082963, 2193786088, 20504332963, 51021911088, 51021911088, 1576900817338, 5391598082963, 43538570739213, 138906002379838, 1092580318786088, 1092580318786088, 1092580318786088
Offset: 0

Views

Author

Jianing Song, Sep 07 2019

Keywords

Comments

For n > 0, a(n) is the unique solution to x^2 == -6 (mod 5^n) in the range [0, 5^n - 1] and congruent to 3 modulo 5.
A324027 is the approximation (congruent to 3 mod 5) of another square root of -6 over the 5-adic field.

Examples

			13^2 = 169 = 7*5^2 - 6;
88^2 = 7744 = 62*5^3 - 6;
463^2 = 214369 = 343*5^4 - 6.
		

Crossrefs

Approximations of 5-adic square roots:
A324027, sequence (sqrt(-6));
A268922, A269590 (sqrt(-4));
A048898, A048899 (sqrt(-1));
A324023, A324024 (sqrt(6)).

Programs

  • PARI
    a(n) = truncate(-sqrt(-6+O(5^n)))

Formula

For n > 0, a(n) = 5^n - A324027(n).
a(n) = A048898(n)*A324024(n) mod 5^n = A048899(n)*A324023(n) mod 5^n.

A034935 Successive approximations to 5-adic integer sqrt(-1).

Original entry on oeis.org

0, 2, 7, 57, 182, 2057, 14557, 45807, 280182, 6139557, 25670807, 123327057, 5006139557, 11109655182, 102662389557, 407838170807, 3459595983307, 79753541295807, 365855836217682, 2273204469030182, 49956920289342682
Offset: 0

Views

Author

Keywords

Comments

This is the root congruent to 2 mod 5.

References

  • J. H. Conway, The Sensual Quadratic Form, p. 118.
  • K. Mahler, Introduction to p-Adic Numbers and Their Functions, Cambridge, 1973, p. 35.

Crossrefs

Programs

  • Mathematica
    Table[ PowerMod[2, 5^n, 5^n], {n, 0, 24}] // Union (* Jean-François Alcover, Dec 03 2012, from formula given by Joe K. Crump *)
  • PARI
    sqrt(-1+O(5^40))
    
  • PARI
    {a(n) = local(k, x, y); for(i = 0, n, until( x != (y = truncate( sqrt( -1 + O(5^(k++))))), x = y));x} /* Michael Somos, Mar 03 2008 */

Formula

Successive values of 2^(5^x) mod 5^x. - Joe K. Crump (joecr(AT)carolina.rr.com), Jan 20 2001

A327303 One of the two successive approximations up to 5^n for the 5-adic integer sqrt(-9). This is the 4 (mod 5) case (except for n = 0).

Original entry on oeis.org

0, 4, 4, 79, 79, 79, 3204, 18829, 331329, 1112579, 1112579, 20643829, 118300079, 850721954, 3292128204, 27706190704, 149776503204, 302364393829, 1065303846954, 8694698378204, 46841671034454, 332943965956329, 332943965956329, 5101315547987579, 28943173458143829
Offset: 0

Views

Author

Jianing Song, Sep 16 2019

Keywords

Comments

a(n) is the unique number k in [1, 5^n] and congruent to 4 mod 5 such that k^2 + 9 is divisible by 5^n.

Examples

			The unique number k in {4, 9, 14, 19, 24} such that k^2 + 9 is divisible by 25 is k = 4, so a(2) = 4.
The unique number k in {4, 29, 54, 79, 104} such that k^2 + 9 is divisible by 125 is k = 79, so a(3) = 46.
The unique number k in {79, 204, 329, 454, 579} such that k^2 + 9 is divisible by 625 is k = 79, so a(4) = 79.
		

Crossrefs

For the digits of sqrt(-9) see A327304 and A327305.
Approximations of 5-adic square roots:
A327302, this sequence (sqrt(-9));
A324027, A324028 (sqrt(-6));
A268922, A269590 (sqrt(-4));
A048898, A048899 (sqrt(-1));
A324023, A324024 (sqrt(6)).

Programs

  • Maple
    R:= [padic:-rootp(x^2+9,5,101)]:
    R:= op(select(t -> padic:-ratvaluep(t,1)=4, R)):
    seq(padic:-ratvaluep(R,n),n=0..100); # Robert Israel, Jan 16 2023
  • PARI
    a(n) = truncate(-sqrt(-9+O(5^n)))

Formula

a(1) = 4; for n >= 2, a(n) is the unique number k in {a(n-1) + m*5^(n-1) : m = 0, 1, 2, 3, 4} such that k^2 + 9 is divisible by 5^n.
For n > 0, a(n) = 5^n - A327302(n).

A327302 One of the two successive approximations up to 5^n for the 5-adic integer sqrt(-9). This is the 1 (mod 5) case (except for n = 0).

Original entry on oeis.org

0, 1, 21, 46, 546, 3046, 12421, 59296, 59296, 840546, 8653046, 28184296, 125840546, 369981171, 2811387421, 2811387421, 2811387421, 460575059296, 2749393418671, 10378787949921, 48525760606171, 143893192246796, 2051241825059296, 6819613407090546, 30661471317246796
Offset: 0

Views

Author

Jianing Song, Sep 16 2019

Keywords

Comments

a(n) is the unique number k in [1, 5^n] and congruent to 1 mod 5 such that k^2 + 9 is divisible by 5^n.

Examples

			The unique number k in {1, 6, 11, 16, 21} such that k^2 + 9 is divisible by 25 is k = 21, so a(2) = 21.
The unique number k in {21, 46, 71, 96, 121} such that k^2 + 9 is divisible by 125 is k = 46, so a(3) = 46.
The unique number k in {46, 171, 296, 421, 546} such that k^2 + 9 is divisible by 625 is k = 546, so a(4) = 546.
		

Crossrefs

For the digits of sqrt(-9) see A327304 and A327305.
Approximations of 5-adic square roots:
this sequence, A327303 (sqrt(-9));
A324027, A324028 (sqrt(-6));
A268922, A269590 (sqrt(-4));
A048898, A048899 (sqrt(-1));
A324023, A324024 (sqrt(6)).

Programs

  • PARI
    a(n) = truncate(sqrt(-9+O(5^n)))

Formula

a(1) = 1; for n >= 2, a(n) is the unique number k in {a(n-1) + m*5^(n-1) : m = 0, 1, 2, 3, 4} such that k^2 + 9 is divisible by 5^n.
For n > 0, a(n) = 5^n - A327303(n).

A210847 a(n) = (3^(2*5^(n-1)) + 1)/(2*5^n), n >= 1.

Original entry on oeis.org

1, 1181, 2871591950767410355081
Offset: 1

Views

Author

Wolfdieter Lang, May 03 2012

Keywords

Comments

The number of digits of a(n) is 1, 4, 22, 117, 593, 2978, 14905, ..., for n >= 1.
Integer a(n) implies that 3^delta(5^n) == -1 (mod 5^n), n>=1, with the degree delta(5^n) = phi(2*5^n)/2 = 2*5^(n-1) of the minimal polynomial C(5^n,x) of the algebraic number 2*cos(Pi/5^n). For delta and the coefficient array of C see A055034 and A187360, respectively. That 2*a(n) is indeed an even integer can be shown by analyzing the terms of the binomial expansion of (10-1)^(5^(n-1)) + 1.
This congruence implies that floor(3^(2*5^(n-1))/5^n) = 2*a(n) - 1, i.e., it is odd. Hence 3^delta(5^n) == +1 (Modd 5^n), n>=1. For Modd n (not to be confused with mod n) see a comment on A203571. One can show that 3 is the smallest positive primitive root Modd 5^n for n>=1. See A206550. The proof uses the fact that the order of 3 using multiplication Modd 5^n has to be a divisor of delta(5^n)=2*5^(n-1), i.e., either 5^e or 2*5^e with certain e>=0. This is because the multiplicative group Modd 5^n has order delta(5^n) and the order of the subgroup formed by the cycle generated by 3 coincides with the order of 3 considered Modd 5^n. Then Lagrange's theorem is applied. That for n>=1 no power of 3 with exponent 2*5^(n-1-j) with j=1,2,..., n-1 is congruent +1 (Modd 5^n) follows by considering the two cases +1 (mod 5^n) and -1 (mod 5^n) separately. The first case is excluded from the above established congruence by an indirect proof. The case -1 (Modd 5^n) can be excluded by an analysis of the relevant expansion for a given smaller power. The other cases 3^k with k = 5^(n-1-j), where j = 0, 1, ..., n-1, are neither -1 (mod 5^n) nor +1 (mod 5^n) because 3^(5^(n-1)) (mod 5^n) is congruent 3 (mod 5) (see A048899), hence neither +1 nor -1 (mod 5^n), respectively. The lower exponents are then excluded in both cases iteratively by an indirect proof taking fifth powers.
The above statements show that for n>=1 the multiplicative group Modd 5^n is cyclic, and for each n the cycle of length 2*5^(n-1) can be generated starting with 3. For the cyclic moduli see A206551.

Examples

			n = 1: (9 + 1)/(10) = 1; n = 2: (3^10 + 1)/50 = 59050/50 = 1181.
n = 3: (3^50 + 1)/250 = 717897987691852588770250/250 = 2871591950767410355081.
		

Crossrefs

Cf. A068531(n-2), n>=3, (the case p=2), A210846 (the case p=3).

Programs

  • Mathematica
    a[n_] := (3^(2*5^(n-1)) + 1)/(2*5^n); Array[a, 3] (* Amiram Eldar, Jul 11 2025 *)

Formula

a(n) = (3^(2*5^(n-1)) + 1)/(2*5^n), n >= 1.

A258929 a(n) is the unique even-valued residue modulo 5^n of a number m such that m^2+1 is divisible by 5^n.

Original entry on oeis.org

2, 18, 68, 182, 1068, 1068, 32318, 280182, 280182, 3626068, 23157318, 120813568, 1097376068, 1097376068, 11109655182, 49925501068, 355101282318, 355101282318, 15613890344818, 15613890344818, 365855836217682, 2273204469030182, 2273204469030182, 49956920289342682
Offset: 1

Views

Author

Jon E. Schoenfield, Jun 15 2015

Keywords

Comments

For any positive integer n, if a number of the form m^2+1 is divisible by 5^n, then m mod 5^n must take one of two values--one even, the other odd. This sequence gives the even residue. (The odd residues are in A259266.)

Examples

			If m^2+1 is divisible by 5, then m mod 5 is either 2 or 3; the even value is 2, so a(1)=2.
If m^2+1 is divisible by 5^2, then m mod 5^2 is either 7 or 18; the even value is 18, so a(2)=18.
If m^2+1 is divisible by 5^3, then m mod 5^3 is either 57 or 68; the even value is 68, so a(3)=68.
		

Crossrefs

Extensions

More terms and additional comments from Jon E. Schoenfield, Jun 23 2015
Previous Showing 21-30 of 32 results. Next