cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A217326 Number of self-inverse permutations in S_n with longest increasing subsequence of length 6.

Original entry on oeis.org

1, 6, 41, 209, 1106, 5323, 26069, 122901, 585922, 2747977, 13000269, 61088173, 289186846, 1366147708, 6496681304, 30905464864, 147912712795, 709073550307, 3418258506885, 16517431269189, 80230551304034, 390774361811783, 1912602871119956, 9388456361080840
Offset: 6

Views

Author

Alois P. Heinz, Sep 30 2012

Keywords

Comments

Also the number of Young tableaux with n cells and 6 rows.

Examples

			a(6) = 1: 123456.
a(7) = 6: 1234576, 1234657, 1235467, 1243567, 1324567, 2134567.
		

Crossrefs

Column k=6 of A047884.

Formula

a(n) = A182172(n,6)-A182172(n,5) = A007579(n)-A049401(n).

A218266 Number of standard Young tableaux of n cells and height >= 6.

Original entry on oeis.org

1, 7, 49, 273, 1506, 7788, 40161, 202917, 1028170, 5190328, 26375635, 134565795, 692890250, 3596739368, 18877483060, 100131220940, 537718999715, 2922918175965, 16100254700137, 89857257410905, 508473405642250, 2916903963927300, 16969580464205400
Offset: 6

Views

Author

Alois P. Heinz, Oct 24 2012

Keywords

Comments

Also number of self-inverse permutations in S_n with longest increasing subsequence of length >= 6. a(6)=1: 123456; a(7)=7: 1234567, 1234576, 1234657, 1235467, 1243567, 1324567, 2134567.

Crossrefs

Column k=6 of A182222.

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n<2, 1, b(n-1) +(n-1)*b(n-2)) end:
    g:= proc(n) option remember; `if`(n<3, [1, 1, 2][n+1],
          ((3*n^2+17*n+15)*g(n-1) +(n-1)*(13*n+9)*g(n-2)
           -15*(n-1)*(n-2)*g(n-3)) / ((n+4)*(n+6)))
        end:
    a:= n-> b(n) -g(n):
    seq(a(n), n=6..30);

Formula

a(n) = A000085(n) - A049401(n) = A182172(n,n) - A182172(n,5).

A229068 Number of standard Young tableaux of n cells and height <= 12.

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 140152, 568503, 2390466, 10349340, 46204720, 211779200, 997134592, 4808141824, 23745792032, 119848119307, 618058083314, 3251373425356, 17442275104496, 95297400355320, 530067682582320, 2998503402985440
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 12 2013

Keywords

Comments

Conjecture: generally (for tableaux with height <= k), a(n) ~ k^n/Pi^(k/2) * (k/n)^(k*(k-1)/4) * Product_{j=1..k} Gamma(j/2); set k=12 for this sequence.

Crossrefs

Cf. A182172, A001405 (k=2), A001006 (k=3), A005817 (k=4), A049401 (k=5), A007579 (k=6), A007578 (k=7), A007580 (k=8), A212915 (k=9), A212916 (k=10), A229053 (k=11).
Column k=12 of A182172.

Programs

  • Mathematica
    RecurrenceTable[{-147456 (-5+n) (-4+n) (-3+n) (-2+n) (-1+n) (12+n) a[-6+n]-110592 (-4+n) (-3+n) (-2+n) (-1+n) (29+2 n) a[-5+n]+256 (-3+n) (-2+n) (-1+n) (121272+32786 n+2343 n^2+49 n^3) a[-4+n]+128 (-2+n) (-1+n) (438597+90321 n+5391 n^2+98 n^3) a[-3+n]-16 (-1+n) (8718630+5347213 n+804616 n^2+49754 n^3+1372 n^4+14 n^5) a[-2+n]-8 (27335490+10162354 n+1206473 n^2+63328 n^3+1533 n^4+14 n^5) a[-1+n]+(11+n) (20+n) (27+n) (32+n) (35+n) (36+n) a[n]==0, a[1]==1, a[2]==2, a[3]==4, a[4]==10, a[5]==26, a[6]==76}, a, {n, 20}]

Formula

Recurrence: (n+11)*(n+20)*(n+27)*(n+32)*(n+35)*(n+36)*a(n) = 8*(14*n^5 + 1533*n^4 + 63328*n^3 + 1206473*n^2 + 10162354*n + 27335490)*a(n-1) + 16*(n-1)*(14*n^5 + 1372*n^4 + 49754*n^3 + 804616*n^2 + 5347213*n + 8718630)*a(n-2) - 128*(n-2)*(n-1)*(98*n^3 + 5391*n^2 + 90321*n + 438597)*a(n-3) - 256*(n-3)*(n-2)*(n-1)*(49*n^3 + 2343*n^2 + 32786*n + 121272)*a(n-4) + 110592*(n-4)*(n-3)*(n-2)*(n-1)*(2*n + 29)*a(n-5) + 147456*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(n+12)*a(n-6).
a(n) ~ 602791875/128 * 12^(n+33)/(Pi^3*n^33).

A103140 Number of 3-noncrossing restricted RNA structures with n vertices.

Original entry on oeis.org

1, 1, 1, 2, 5, 14, 40, 119, 364, 1145, 3688, 12139, 40734, 139071, 482214, 1695469, 6036768, 21740969, 79117822, 290674470, 1077306351, 4025068621, 15151115808, 57427176992, 219068962330, 840708048210, 3244438898552, 12586627632549, 49069788882951
Offset: 1

Views

Author

Parthasarathy Nambi, Sep 07 2008

Keywords

Comments

a(n) is the number of 3-noncrossing partial matchings over n vertices and without arcs of length 1 and 2. - Andrey Zabolotskiy, Nov 11 2023

Crossrefs

Programs

  • Mathematica
    sf3[n_] := sf3[n] = Sum[Binomial[n, 2 k] (CatalanNumber[k + 2] CatalanNumber[k] - CatalanNumber[k + 1]^2), {k, 0, n/2}]; (* this is A049401 *)
    la[0, 0, 0] = 1;
    la[?Negative, , ] = la[, ?Negative, ] = la[, , _?Negative] = 0;
    la[n_, b1_, b2_] := la[n, b1, b2] = la[n - 2, b1 - 1, b2] + la[n - 1, b1, b2] + la[n - 4, b1, b2 - 2] + la[n - 3, b1, b2 - 1];
    a[n_] := Sum[(-1)^(b1 + b2) la[n, b1, b2] sf3[n - 2 (b1 + b2)], {b1, 0, n/2}, {b2, 0, n/2}];
    Table[a[n], {n, 30}] (* Andrey Zabolotskiy, Nov 11 2023, from eqs. (4.2), (4.3), and (2.14) by Jin et al. *)

Extensions

Terms a(16) and beyond from Andrey Zabolotskiy, Nov 11 2023
Previous Showing 11-14 of 14 results.