cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A050069 a(n) = a(n-1) + a(m) for n >= 3, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = 3.

Original entry on oeis.org

1, 3, 4, 7, 8, 15, 19, 22, 23, 45, 64, 79, 87, 94, 98, 101, 102, 203, 301, 395, 482, 561, 625, 670, 693, 715, 734, 749, 757, 764, 768, 771, 772, 1543, 2311, 3075, 3832, 4581, 5315, 6030, 6723, 7393, 8018, 8579, 9061, 9456, 9757
Offset: 1

Views

Author

Keywords

Comments

In the Mathematica program below, the author of the program uses a(1) = 1, a(2) = 3, and a(3) = 4 as initial conditions. This is not necessary. We get the same sequence using only a(1) = 1 and a(2) = 3 as initial conditions. - Petros Hadjicostas, Nov 13 2019

Crossrefs

Cf. similar sequences with different initial conditions: A050025 (1,1,1), A050029 (1,1,2), A050033 (1,1,3), A050037 (1,1,4), A050041 (1,2,1), A050045 (1,2,2), A050049 (1,2,3), A050053 (1,2,4), A050057 (1,3,1), A050061 (1,3,2), A050065 (1,3,3).

Programs

  • Maple
    a := proc(n) option remember;
    `if`(n < 3, [1, 3][n], a(n - 1) + a(Bits:-Iff(n - 2, n - 2) + 3 - n)); end proc;
    seq(a(n), n = 1 .. 48); # Petros Hadjicostas, Nov 08 2019
  • Mathematica
    Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 3, 4}, Flatten@Table[k, {n, 5}, {k, 2^n, 1, -1}]] (* Ivan Neretin, Sep 08 2015 *)

Extensions

Name edited by Petros Hadjicostas, Nov 08 2019

A050033 a(n) = a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 3.

Original entry on oeis.org

1, 1, 3, 4, 5, 9, 12, 13, 14, 27, 39, 48, 53, 57, 60, 61, 62, 123, 183, 240, 293, 341, 380, 407, 421, 434, 446, 455, 460, 464, 467, 468, 469, 937, 1404, 1868, 2328, 2783, 3229, 3663, 4084, 4491, 4871, 5212, 5505, 5745, 5928, 6051
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. similar sequences with different initial conditions: A050025 (1,1,1), A050029 (1,1,2), A050037 (1,1,4), A050041 (1,2,1), A050045 (1,2,2), A050049 (1,2,3), A050053 (1,2,4), A050057 (1,3,1), A050061 (1,3,2), A050065 (1,3,3), A050069 (1,3,4).

Programs

  • Maple
    a := proc(n) option remember;
    `if`(n < 4, [1, 1, 3][n], a(n - 1) + a(2^ceil(log[2](n - 1)) + 2 - n)); end proc;
    seq(a(n), n = 1 .. 48); # Petros Hadjicostas, Nov 08 2019
  • Mathematica
    Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 1, 3}, Flatten@Table[k, {n, 5}, {k, 2^n, 1, -1}]] (* Ivan Neretin, Sep 07 2015 *)

Extensions

Name edited by Petros Hadjicostas, Nov 08 2019

A050037 a(n) = a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 4.

Original entry on oeis.org

1, 1, 4, 5, 6, 11, 15, 16, 17, 33, 48, 59, 65, 70, 74, 75, 76, 151, 225, 295, 360, 419, 467, 500, 517, 533, 548, 559, 565, 570, 574, 575, 576, 1151, 1725, 2295, 2860, 3419, 3967, 4500, 5017, 5517, 5984, 6403, 6763, 7058, 7283, 7434
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. similar sequences with different initial conditions: A050025 (1,1,1), A050029 (1,1,2), A050033 (1,1,3), A050041 (1,2,1), A050045 (1,2,2), A050049 (1,2,3), A050053 (1,2,4), A050057 (1,3,1), A050061 (1,3,2), A050065 (1,3,3), A050069 (1,3,4).

Programs

  • Maple
    a := proc(n) option remember;
    `if`(n < 4, [1, 1, 4][n], a(n - 1) + a(2^ceil(log[2](n - 1)) + 2 - n)); end proc;
    seq(a(n), n = 1 .. 48); # Petros Hadjicostas, Nov 08 2019
  • Mathematica
    Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 1, 4}, Flatten@Table[k, {n, 5}, {k, 2^n, 1, -1}]] (* Ivan Neretin, Sep 07 2015 *)

Extensions

Name edited by Petros Hadjicostas, Nov 08 2019

A050041 a(n) = a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 1.

Original entry on oeis.org

1, 2, 1, 3, 4, 7, 8, 10, 11, 21, 29, 36, 40, 43, 44, 46, 47, 93, 137, 180, 220, 256, 285, 306, 317, 327, 335, 342, 346, 349, 350, 352, 353, 705, 1055, 1404, 1750, 2092, 2427, 2754, 3071, 3377, 3662, 3918, 4138, 4318, 4455, 4548, 4595
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. similar sequences with different initial conditions: A050025 (1,1,1), A050029 (1,1,2), A050033 (1,1,3), A050037 (1,1,4), A050045 (1,2,2), A050049 (1,2,3), A050053 (1,2,4), A050057 (1,3,1), A050061 (1,3,2), A050065 (1,3,3), A050069 (1,3,4).

Programs

  • Maple
    a := proc(n) option remember;
    `if`(n < 4, [1, 2, 1][n], a(n - 1) + a(2^ceil(log[2](n - 1)) + 2 - n)); end proc;
    seq(a(n), n = 1..50); # Petros Hadjicostas, Nov 11 2019
  • Mathematica
    Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 2, 1}, Flatten@Table[k, {n, 5}, {k, 2^n, 1, -1}]] (* Ivan Neretin, Sep 07 2015 *)

Extensions

Name edited by Petros Hadjicostas, Nov 11 2019

A050045 a(n) = a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = a(3) = 2.

Original entry on oeis.org

1, 2, 2, 4, 5, 9, 11, 13, 14, 27, 38, 47, 52, 56, 58, 60, 61, 121, 179, 235, 287, 334, 372, 399, 413, 426, 437, 446, 451, 455, 457, 459, 460, 919, 1376, 1831, 2282, 2728, 3165, 3591, 4004, 4403, 4775, 5109, 5396, 5631, 5810, 5931
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. similar sequences with different initial conditions: A050025 (1,1,1), A050029 (1,1,2), A050033 (1,1,3), A050037 (1,1,4), A050041 (1,2,1), A050049 (1,2,3), A050053 (1,2,4), A050057 (1,3,1), A050061 (1,3,2), A050065 (1,3,3), A050069 (1,3,4).

Programs

  • Maple
    a := proc(n) option remember;
    `if`(n < 4, [1, 2, 2][n], a(n - 1) + a(2^ceil(log[2](n - 1)) + 2 - n)):
    end proc:
    seq(a(n), n = 1..60); # Petros Hadjicostas, Nov 14 2019
  • Mathematica
    Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 2, 2}, Flatten@Table[k, {n, 5}, {k, 2^n, 1, -1}]] (* Ivan Neretin, Sep 07 2015 *)

Extensions

Name edited by Petros Hadjicostas, Nov 14 2019

A050053 a(n) = a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 4.

Original entry on oeis.org

1, 2, 4, 6, 7, 13, 17, 19, 20, 39, 56, 69, 76, 82, 86, 88, 89, 177, 263, 345, 421, 490, 546, 585, 605, 624, 641, 654, 661, 667, 671, 673, 674, 1347, 2018, 2685, 3346, 4000, 4641, 5265, 5870, 6455, 7001, 7491, 7912, 8257, 8520, 8697
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. similar sequences with different initial conditions: A050025 (1,1,1), A050029 (1,1,2), A050033 (1,1,3), A050037 (1,1,4), A050041 (1,2,1), A050045 (1,2,2), A050049 (1,2,3), A050057 (1,3,1), A050061 (1,3,2), A050065 (1,3,3), A050069 (1,3,4).

Programs

  • Maple
    a := proc(n) option remember;
    `if`(n < 4, [1, 2, 4][n], a(n - 1) + a(2^ceil(log[2](n - 1)) + 2 - n)); end proc;
    seq(a(n), n = 1 .. 48); # Petros Hadjicostas, Nov 09 2019
  • Mathematica
    Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 2, 4}, Flatten@Table[k, {n, 5}, {k, 2^n, 1, -1}]] (* Ivan Neretin, Sep 08 2015 *)

Extensions

Name edited by Petros Hadjicostas, Nov 09 2019

A050057 a(n) = a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 1.

Original entry on oeis.org

1, 3, 1, 4, 5, 9, 10, 13, 14, 27, 37, 46, 51, 55, 56, 59, 60, 119, 175, 230, 281, 327, 364, 391, 405, 418, 428, 437, 442, 446, 447, 450, 451, 901, 1348, 1794, 2236, 2673, 3101, 3519, 3924, 4315, 4679, 5006, 5287, 5517, 5692, 5811
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. similar sequences with different initial conditions: A050025 (1,1,1), A050029 (1,1,2), A050033 (1,1,3), A050037 (1,1,4), A050041 (1,2,1), A050045 (1,2,2), A050049 (1,2,3), A050053 (1,2,4), A050061 (1,3,2), A050065 (1,3,3), A050069 (1,3,4).

Programs

  • Maple
    a := proc(n) option remember;
    `if`(n < 4, [1, 3, 1][n], a(n - 1) + a(Bits:-Iff(n - 2, n - 2) + 3 - n)); end proc;
    seq(a(n), n = 1..48); # Petros Hadjicostas, Nov 08 2019
  • Mathematica
    Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 3, 1}, Flatten@Table[k, {n, 5}, {k, 2^n, 1, -1}]] (* Ivan Neretin, Sep 08 2015 *)

Extensions

Name edited by Petros Hadjicostas, Nov 08 2019

A050061 a(n) = a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 2.

Original entry on oeis.org

1, 3, 2, 5, 6, 11, 13, 16, 17, 33, 46, 57, 63, 68, 70, 73, 74, 147, 217, 285, 348, 405, 451, 484, 501, 517, 530, 541, 547, 552, 554, 557, 558, 1115, 1669, 2221, 2768, 3309, 3839, 4356, 4857, 5341, 5792, 6197, 6545, 6830, 7047, 7194
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. similar sequences with different initial conditions: A050025 (1,1,1), A050029 (1,1,2), A050033 (1,1,3), A050037 (1,1,4), A050041 (1,2,1), A050045 (1,2,2), A050049 (1,2,3), A050053 (1,2,4), A050057 (1,3,1), A050065 (1,3,3), A050069 (1,3,4).

Programs

  • Maple
    a := proc(n) option remember;
    `if`(n < 4, [1, 3, 2][n], a(n - 1) + a(2^ceil(log[2](n - 1)) + 2 - n)); end proc;
    seq(a(n), n = 1..50); # Petros Hadjicostas, Nov 11 2019
  • Mathematica
    Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 3, 2}, Flatten@Table[k, {n, 5}, {k, 2^n, 1, -1}]] (* Ivan Neretin, Sep 08 2015 *)

Extensions

Name edited by Petros Hadjicostas, Nov 11 2019

A050065 a(n) = a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = a(3) = 3.

Original entry on oeis.org

1, 3, 3, 6, 7, 13, 16, 19, 20, 39, 55, 68, 75, 81, 84, 87, 88, 175, 259, 340, 415, 483, 538, 577, 597, 616, 632, 645, 652, 658, 661, 664, 665, 1329, 1990, 2648, 3300, 3945, 4577, 5193, 5790, 6367, 6905, 7388, 7803, 8143, 8402, 8577
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. similar sequences with different initial conditions: A050025 (1,1,1), A050029 (1,1,2), A050033 (1,1,3), A050037 (1,1,4), A050041 (1,2,1), A050045 (1,2,2), A050049 (1,2,3), A050053 (1,2,4), A050057 (1,3,1), A050061 (1,3,2), A050069 (1,3,4).

Programs

  • Maple
    a := proc(n) option remember;
    `if`(n < 4, [1, 3, 3][n], a(n - 1) + a(Bits:-Iff(n - 2, n - 2) + 3 - n)); end proc;
    seq(a(n), n = 1 .. 48); # Petros Hadjicostas, Nov 08 2019
  • Mathematica
    Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 3, 3}, Flatten@Table[k, {n, 5}, {k, 2^n, 1, -1}]] (* Ivan Neretin, Sep 08 2015 *)

Extensions

Name edited by Petros Hadjicostas, Nov 08 2019

A110428 a(1) = 1 and a(2) = 2. Subsequent terms are generated like this: if a(m) is the last term available -- say a(2) -- then a(m+1) = a(m) * a(m-1), a(m+2) = a(m) * a(m-1) * a(m-2), ..., a(2*m-1) = a(m) * a(m-1) * a(m-2) * ... * a(2) * a(1), a(2*m) = a(2*m-1) * a(2*m-2), and so on.

Original entry on oeis.org

1, 2, 2, 4, 4, 16, 32, 64, 64, 4096, 131072, 2097152, 8388608, 33554432, 67108864, 134217728, 134217728, 18014398509481984, 1208925819614629174706176, 40564819207303340847894502572032, 340282366920938463463374607431768211456
Offset: 1

Views

Author

Amarnath Murthy, Aug 01 2005

Keywords

Comments

By choosing appropriate values for a(1) and a(2), many such sequences can be generated.

Examples

			a(3) = a(2)*a(1) = 2. [Now a(3) is the last term available.]
a(4) = a(3)*a(2) = 4.
a(5) = a(3)*a(2)*a(1) = 4. [Now a(5) is the last term available.]
a(6) = a(5)*a(4) = 16.
a(7) = a(5)*a(4)*a(3) = 32.
a(8) = a(5)*a(4)*a(3)*a(2) = 64.
a(9) = a(5)*a(4)*a(3)*a(2)*a(1) = 64. [Now a(9) is the last term available.]
a(10) = a(9)*a(8) = 4096.
a(11) = a(9)*a(8)*a(7) = 131072.
...
a(17) = a(9)*a(8)*...*a(1) = 134217728. [Now a(17) is the last term available.]
a(18) = a(17)*a(16) = 18014398509481984.
[Example extended by _Petros Hadjicostas_, Nov 13 2019]
		

Crossrefs

Cf. A000051 (index of "available" terms as described above), A050049 (an additive version of this sequence), A329474 (log[2] of this sequence).

Programs

  • Maple
    a := proc(n) option remember;
    `if`(n < 3, [1, 2][n], a(n - 1) * a(2^ceil(log[2](n - 1)) + 2 - n));
    end proc;
    seq(a(n), n = 1..25); # Petros Hadjicostas, Nov 13 2019

Formula

From Petros Hadjicostas, Nov 13 2019: (Start)
a(n) = a(n-1) * a(m) for n >= 3, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = 2.
a(A000051(n)) = a(2^n + 1) = a(2^n) for n >= 1.
a(A000051(n) + 1) = a(2^n + 2) = a(2^n + 1) * a(2^n) = a(2^n)^2 for n >= 1.
log[2](a(n)) = A329474(n) for n >= 1. (End)

Extensions

More terms from Joshua Zucker, May 10 2006
Showing 1-10 of 11 results. Next