cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 105 results. Next

A236209 Sum of the seventh powers of the first n primes.

Original entry on oeis.org

128, 2315, 80440, 903983, 20391154, 83139671, 493478344, 1387350083, 4792175530, 22042051839, 49554665950, 144486543083, 339240816964, 611059428071, 1117682548534, 2292393688371, 4781045173190, 7923788009211, 13984499614534, 23079619772925, 34127018292022
Offset: 1

Views

Author

Robert Price, Jan 20 2014

Keywords

Crossrefs

Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n).
Partial sums of A092759.

Programs

  • Mathematica
    Table[Sum[Prime[k]^7, {k, n}], {n, 1000}]

Formula

a(n) = Sum_{k=1..n} prime(k)^7.

A236214 Sum of the eighth powers of the first n primes.

Original entry on oeis.org

256, 6817, 397442, 6162243, 220521124, 1036251845, 8012009286, 24995572327, 103306557608, 603552970569, 1456444008010, 4968923461931, 12953848691052, 24642048968653, 48453335630414, 110713026041775, 257543463646096, 449250776643377, 855318454200018
Offset: 1

Views

Author

Robert Price, Jan 20 2014

Keywords

Crossrefs

Cf. A085450 = smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n.
Partial sums of A179645.

Programs

  • Mathematica
    Table[Sum[Prime[k]^8, {k, n}], {n, 1000}]
    Accumulate[Prime[Range[20]]^8] (* Harvey P. Dale, Feb 25 2016 *)

Formula

a(n) = Sum_{k=1..n} prime(k)^8.

A236215 Sum of the ninth powers of the first n primes.

Original entry on oeis.org

512, 20195, 1973320, 42326927, 2400274618, 13004773991, 131592650488, 454280348267, 2255433009730, 16762578985599, 43202201146270, 173163940941347, 500545875335308, 1003138487272151, 2122268960374918, 5422032552177051, 14085028370831990, 25779174463666131
Offset: 1

Views

Author

Robert Price, Jan 20 2014

Keywords

Crossrefs

Cf. A085450 = smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n.
Partial sums of A179665.

Programs

  • Mathematica
    Table[Sum[Prime[k]^9, {k, n}], {n, 1000}]
    Accumulate[Prime[Range[20]]^9] (* Harvey P. Dale, Jul 01 2015 *)

Formula

a(n) = Sum_{k=1..n} prime(k)^9.

A236216 Sum of the tenth powers of the first n primes.

Original entry on oeis.org

1024, 60073, 9825698, 292300947, 26229725548, 164088217397, 2180082117846, 8311148375647, 49737659589296, 470444892889497, 1290073179870298, 6098657552288147, 19521316862440548, 41132799175724797, 93731931411554846, 268619401777067895, 779736155077709296
Offset: 1

Views

Author

Robert Price, Jan 20 2014

Keywords

Crossrefs

Cf. A085450 = smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n.
Partial sums of A030629.

Programs

  • Mathematica
    Table[Sum[Prime[k]^10, {k, n}], {n, 1000}]

Formula

a(n) = Sum_{k=1..n} prime(k)^10.

A236218 Sum of the twelfth powers of the first n primes.

Original entry on oeis.org

4096, 535537, 244676162, 14085963363, 3152514340084, 26450599462565, 609072836692326, 2822387755758487, 24737012187778808, 378551795393247849, 1166214579181797610, 7749166585021832891, 30312656885388018972, 70272287682650595373, 186463770791599173614
Offset: 1

Views

Author

Robert Price, Jan 20 2014

Keywords

Crossrefs

Cf. A085450 = smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n.
Partial sums of A030631.

Programs

  • Mathematica
    Table[Sum[Prime[k]^12, {k, n}], {n, 1000}]
    Accumulate[Prime[Range[20]]^12] (* Harvey P. Dale, Jan 31 2014 *)
  • PARI
    s=[]; for(n=1, 15, s=concat(s, sum(i=1, n, prime(i)^12))); s \\ Colin Barker, Jan 20 2014

Formula

a(n) = sum(k = 1 .. n, prime(k)^12).

A236221 Sum of the thirteenth powers of the first n primes.

Original entry on oeis.org

8192, 1602515, 1222305640, 98111316047, 34620823459978, 337495930052231, 10242073962958168, 52295057425215227, 556331419361682610, 10816960132320284799, 35234506429765327390, 278803730645846632787, 1203906832960860262108, 2922170957243151047351
Offset: 1

Views

Author

Robert Price, Jan 20 2014

Keywords

Crossrefs

Cf. A085450 = smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n.
Partial sums of A138031.

Programs

  • Mathematica
    Table[Sum[Prime[k]^13, {k, n}], {n, 100}]

Formula

a(n) = Sum_{k=1..n} prime(k)^13.

A236222 Sum of the fourteenth powers of the first n primes.

Original entry on oeis.org

16384, 4799353, 6108314978, 684331387827, 380434164971068, 4317810550670357, 172695637110071286, 971702322892955407, 12564538647431705216, 310122771323231168697, 1067066706544027489018, 10079128002539035788707, 48008355197454594590868
Offset: 1

Views

Author

Robert Price, Jan 20 2014

Keywords

Crossrefs

Cf. A085450 = smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n.

Programs

  • Mathematica
    Table[Sum[Prime[k]^14, {k, n}], {n, 1000}]
    Accumulate[Prime[Range[20]]^14] (* Harvey P. Dale, Nov 26 2014 *)

Formula

a(n) = sum(k = 1 .. n, prime(k)^14).

A236223 Sum of the fifteenth powers of the first n primes.

Original entry on oeis.org

32768, 14381675, 30531959800, 4778093469743, 4182026262885394, 55367919276976151, 2917790970786791944, 18098918000661590243, 284734153465052835850, 8913922901063237276799, 32379184892907923206750, 365825452844723230295243, 1920923767836261141183844
Offset: 1

Views

Author

Robert Price, Jan 20 2014

Keywords

Crossrefs

Cf. A085450 = smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n.

Programs

  • Mathematica
    Table[Sum[Prime[k]^15, {k, n}], {n, 1000}]
    Accumulate[Prime[Range[15]]^15] (* Harvey P. Dale, Mar 09 2022 *)

Formula

a(n) = sum(k = 1 .. n, prime(k)^15).

A236224 Sum of the sixteenth powers of the first n primes.

Original entry on oeis.org

65536, 43112257, 152631002882, 33385561572483, 45983115425144644, 711399724608324485, 49372591600275192966, 337814005167896360647, 6470424420848895009608, 256716898101196243797129, 984140019848381507625610, 13321651934065547869899851
Offset: 1

Views

Author

Robert Price, Jan 20 2014

Keywords

Crossrefs

Cf. A085450 = smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n.
Partial sums of A030635.

Programs

  • Mathematica
    Table[Sum[Prime[k]^16, {k, n}], {n, 1000}]

Formula

a(n) = sum(k = 1 .. n, prime(k)^16).

A236225 Sum of the seventeenth powers of the first n primes.

Original entry on oeis.org

131072, 129271235, 763068724360, 233393582711567, 505680422082005338, 9156096341463343271, 836396358227800107448, 6316783216012602293387, 147366822776675571219490, 7404514559506748686057599, 29954631333669491864740510, 486442572159704647268887427
Offset: 1

Views

Author

Robert Price, Jan 20 2014

Keywords

Crossrefs

Cf. A085450 = smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n.
Partial sums of A138032.

Programs

  • Mathematica
    Table[Sum[Prime[k]^17, {k, n}], {n, 1000}]
    Accumulate[Prime[Range[20]]^17] (* Harvey P. Dale, Nov 05 2016 *)

Formula

a(n) = Sum_{k=1..n} prime(k)^17.
Previous Showing 81-90 of 105 results. Next