cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-37 of 37 results.

A050967 Discriminants of real quadratic fields with class number 1 and related continued fraction period length of 18.

Original entry on oeis.org

139, 163, 283, 417, 419, 566, 633, 737, 758, 781, 787, 998, 1141, 1142, 1163, 1286, 1307, 1337, 1461, 1718, 1829, 1931, 2243, 2537, 2653, 2966, 2973, 3013, 3117, 3629, 3713, 4061, 4269, 4541, 4781, 6629, 6717, 7037, 7133, 7181, 8013, 8157, 8197, 8301, 8777, 9957, 10277, 10493, 11429, 11957, 12293, 13373, 13917, 16373, 18653, 18813, 18893, 20597, 23597, 24173, 26837, 30917
Offset: 1

Views

Author

N. J. A. Sloane, Jan 04 2000

Keywords

References

  • R. A. Mollin, Quadratics, CRC Press, 1996, Appendix A.

Crossrefs

Extensions

a(42) and following from Georg Fischer, Sep 20 2021

A050968 Discriminants of real quadratic fields with class number 1 and related continued fraction period length of 19.

Original entry on oeis.org

241, 313, 449, 829, 953, 1069, 1193, 1213, 1697, 2381, 3853, 4733, 5077, 5189, 5381, 5669, 5981, 6173, 6277, 6389, 6397, 6917, 7717, 7757, 7877, 8237, 9973, 10037, 11093, 11933, 12893, 13397, 19997, 27917
Offset: 1

Views

Author

N. J. A. Sloane, Jan 04 2000

Keywords

References

  • R. A. Mollin, Quadratics, CRC Press, 1996, Appendix A.

Crossrefs

A051963 Discriminants of real quadratic fields with class number 1 and related continued fraction period length of 22.

Original entry on oeis.org

166, 489, 491, 523, 643, 662, 947, 971, 1137, 1187, 1427, 1571, 1667, 1713, 1821, 2181, 2217, 2469, 3493, 3693, 3749, 3909, 3947, 4213, 4787, 4989, 5789, 5893, 5909, 6933, 6941, 7509, 7941, 10157, 10533, 10821, 11189, 11469, 12477, 12533, 13733, 14333, 14853, 15069, 15637, 15893, 17813, 19613, 20429, 21117, 23093, 30533, 35237, 36893
Offset: 1

Views

Author

N. J. A. Sloane, Jan 04 2000

Keywords

References

  • R. A. Mollin, Quadratics, CRC Press, 1996, Appendix A.

Crossrefs

Extensions

a(41) and following from Georg Fischer, Sep 20 2021

A051964 Discriminants of real quadratic fields with class number 1 and related continued fraction period length of 23.

Original entry on oeis.org

433, 457, 641, 881, 1381, 1913, 2393, 2749, 3389, 3733, 4421, 5653, 6701, 7349, 7949, 8669, 10253, 11813, 12413, 13709, 13757, 14717, 14813, 14957, 15749, 16229, 16453, 19037, 19421, 22613, 22853, 24317, 27653, 28517, 30197, 31253, 33893, 37397
Offset: 1

Views

Author

N. J. A. Sloane, Jan 04 2000

Keywords

References

  • R. A. Mollin, Quadratics, CRC Press, 1996, Appendix A.

Crossrefs

Extensions

a(37), a(38) from Georg Fischer, Sep 20 2021

A347300 Under Hypothesis(H) (a version of the Generalized Riemann Hypothesis) the only principal real quadratic fields with discriminant d = r^2 + 1 == 1 (mod 4) are the fields Q(sqrt(t)) where t is one of the six numbers listed here.

Original entry on oeis.org

5, 17, 37, 101, 197, 677
Offset: 1

Views

Author

N. J. A. Sloane, Aug 28 2021

Keywords

References

  • Gilles Lachaud, On real quadratic fields, Bull. Amer. Math. Soc., 17:2 (1987), 307-311. See Theorem 3.2.

Crossrefs

A355424 Positive integers m such that the real quadratic fields of the form Q(sqrt(m^2+4)) have class number 1.

Original entry on oeis.org

1, 3, 5, 7, 13, 17
Offset: 1

Views

Author

Marco Ripà, Jul 01 2022

Keywords

Comments

Former Yokoi's conjecture, proved by Biró in 2003 (see References). There are only six real quadratic fields of the form Q(sqrt(a(n)^2+4)), where Q indicates the set of rational numbers, with class number one.

Examples

			a(1) = 1, since h(1^2 + 4) = h(5) = 1.
		

Crossrefs

Formula

Let n be a positive integer less than 7. a(n) = 4*n - 7 iff n = 5, 6 and a(n) = 1 + 2*(n - 1) otherwise.

A355461 Squarefree numbers d of the form r^2*m^2 + 4*r, where r and m are odd positive integers, such that Q(sqrt(d)) has class number 1.

Original entry on oeis.org

5, 13, 21, 29, 53, 173, 237, 293, 437, 453, 1133, 1253
Offset: 1

Views

Author

Marco Ripà, Jul 02 2022

Keywords

Comments

In 1801, Gauss conjectured that there exist infinitely many real quadratic fields with class number one and the conjecture is still unproved, but there are only 12 real quadratic fields of class number one which are of the form Q(sqrt(r^2*m^2 + 4*r)), where the parameters r and m are odd integers. Those 12 values of d := r^2*m^2 + 4*r belong to the present sequence.

Examples

			a(2) = 13 since h(13) = h(1^2*3^2 + 4*1) = 1.
		

Crossrefs

Previous Showing 31-37 of 37 results.