cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A383864 The sum of divisors d of n having the property that for every prime p dividing n the p-adic valuation of d is either 0 or a unitary divisor of the p-adic valuation of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 11, 13, 18, 12, 28, 14, 24, 24, 19, 18, 39, 20, 42, 32, 36, 24, 44, 31, 42, 31, 56, 30, 72, 32, 35, 48, 54, 48, 91, 38, 60, 56, 66, 42, 96, 44, 84, 78, 72, 48, 76, 57, 93, 72, 98, 54, 93, 72, 88, 80, 90, 60, 168, 62, 96, 104, 79, 84, 144
Offset: 1

Views

Author

Amiram Eldar, May 12 2025

Keywords

Comments

First differs from A383866 at n = 256.
The sum of divisors d of n such that each is a unitary divisor of an exponential unitary divisor of n (see A361255).
Analogous to the sum of (1+e)-divisors (A051378) as exponential unitary divisors (A361255, A322857) are analogous to exponential divisors (A322791, A051377).
The number of these divisors is A383863(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + DivisorSum[e, p^# &, CoprimeQ[#, e/#] &]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + sumdiv(f[i, 2], d, if(gcd(d, f[i, 2]/d) == 1, f[i, 1]^d)));}

Formula

Multiplicative with a(p^e) = 1 + Sum_{d|e, gcd(d, e/d) = 1} p^d.
a(n) <= A051378(n), with equality if and only if n is an exponentially squarefree number (A209061).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} f(1/p) = 1.52168352620962354041..., and f(x) = (1-x) * (1 + Sum_{k>=1} (1 + Sum{d|k, gcd(d, k/d)=1} x^(2*k-d))).

A383866 The sum of divisors d of n having the property that for every prime p dividing n the p-adic valuation of d is either 0 or an infinitary divisor of the p-adic valuation of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 11, 13, 18, 12, 28, 14, 24, 24, 19, 18, 39, 20, 42, 32, 36, 24, 44, 31, 42, 31, 56, 30, 72, 32, 35, 48, 54, 48, 91, 38, 60, 56, 66, 42, 96, 44, 84, 78, 72, 48, 76, 57, 93, 72, 98, 54, 93, 72, 88, 80, 90, 60, 168, 62, 96, 104, 79, 84, 144
Offset: 1

Views

Author

Amiram Eldar, May 13 2025

Keywords

Comments

First differs from A383864 at n = 256.
The sum of divisors d of n such that each is a unitary divisor of an exponential infinitary divisor of n (see A383760).
Analogous to the sum of (1+e)-divisors (A051378) as exponential infinitary divisors (A383760, A361175) are analogous to exponential divisors (A322791, A051377).
The number of these divisors is A383865(n).

Crossrefs

Programs

  • Mathematica
    infdivs[n_] := If[n == 1, {1}, Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]];  (* Michael De Vlieger at A077609 *)
    f[p_, e_] := 1 + Total[p^infdivs[e]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); }
    infdivs(n) = {d = divisors(n); f = factor(n); idiv = []; for (k=1, #d, if (isidiv(d[k], f), idiv = concat(idiv, d[k])); ); idiv; } \\ Michel Marcus at A077609
    a(n) = {my(f = factor(n), d); prod(i = 1, #f~, d = infdivs(f[i, 2]); 1 + sum(j = 1, #d, f[i, 1]^d[j]));}

Formula

Multiplicative with a(p^e) = 1 + Sum_{d infinitary divisor of e} p^d.
a(n) <= A051378(n), with equality if and only if all the exponents in the prime factorization of n are in A036537.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} f(1/p) = 1.52187097260174705015..., and f(x) = (1-x) * (1 + Sum_{k>=1} (1 + Sum{d infinitary divisor of k} x^(2*k-d))).

A087745 Numbers A001317 repeated.

Original entry on oeis.org

1, 1, 3, 3, 5, 5, 15, 15, 17, 17, 51, 51, 85, 85, 255, 255, 257, 257, 771, 771, 1285, 1285, 3855, 3855, 4369, 4369, 13107, 13107, 21845, 21845, 65535, 65535, 65537, 65537, 196611, 196611, 327685, 327685, 983055, 983055, 1114129, 1114129
Offset: 0

Views

Author

Philippe Deléham, Oct 02 2003

Keywords

Comments

Triangles A049444, A049459, A051338, A051379, A051523 (Mitrinovic's triangles) mod 2 converted to decimal.
Sequence [1, 3, 5, 15, 17, 51, 85, 255, 257, ...] = A001317.

Crossrefs

Programs

  • Python
    def A087745(n): return sum((bool(~(m:=n>>1)&m-k)^1)<>1)+1)) # Chai Wah Wu, May 02 2023

Extensions

Definition corrected and edited by Omar E. Pol, Dec 24 2008

A274116 (1+e)-sigma amicable numbers.

Original entry on oeis.org

220, 284, 366, 378, 2620, 2924, 3864, 4584, 5020, 5564, 16104, 16536, 16632, 16728, 26448, 28752, 29760, 30912, 43524, 53692, 63020, 67344, 69552, 69615, 76084, 87633, 100485, 122265, 124155, 139815, 142290, 142310, 168730, 179118, 196248, 196724, 198990, 202444
Offset: 1

Views

Author

Paolo P. Lava, Jun 10 2016

Keywords

Comments

The first time a pair ordered by its first element is not adjacent is x = 16104, y = 16632 which correspond to a(11) and a(13), respectively.

Examples

			(1+e)-sigma(366) = 378 and (1+e)-sigma(378) = 366.
		

Crossrefs

Programs

  • Maple
    with(numtheory): T:=proc(n) local a,d,p,e,s,sp; a:=1;
    for d in ifactors(n)[2] do p:=op(1,d); e:= op(2,d); sp:=1;
    for s in divisors(e) do sp:=sp+p^s; od: a:=a*sp; od: a; end:
    P:=proc(q) local n,x,y; for n from 1 to q do x:=T(n)-n; y:=T(x)-x;
    if n=y and x<>y then print(n); fi; od; end: P(10^10);

A274118 (1+e)-sigma betrothed numbers.

Original entry on oeis.org

108, 140, 195, 1050, 1925, 8892, 16587, 312620, 549219, 587460, 1057595, 1279950, 2576945, 5088650, 6446325, 7460004, 7875450, 10925915, 13922100, 16381925, 22559060, 26502315, 29864120, 30809415, 31213899, 41137620, 84854315, 89446860, 102019644, 114859884
Offset: 1

Views

Author

Paolo P. Lava, Jun 10 2016

Keywords

Comments

Members of a pair (m,n) such that (1+e)-sigma(m)=(1+e)-sigma(n)=m+n+1, where (1+e)-sigma = A051378.
So far, 108 is the only fixed point of the transform n -> (1+e)sigma(n)-n-1.

Examples

			(1+e)-sigma(140) - 140 - 1 = 336 - 140 - 1 = 195 and (1+e)-sigma(195) - 195 - 1 = 336 - 195 - 1 = 140.
		

Crossrefs

Programs

  • Maple
    with(numtheory): T:=proc(n) local a,d,p,e,s,sp; a:=1;
    for d in ifactors(n)[2] do p:=op(1,d); e:= op(2,d); sp:=1;
    for s in divisors(e) do sp:=sp+p^s; od: a:=a*sp; od: a; end:
    P:=proc(q) local n,x,y; for n from 2 to q do x:=T(n)-n-1; y:=T(x)-x-1;
    if n=y then print(n); fi; od; end: P(10^10);

A349285 (1+e)-weird numbers: (1+e)-abundant numbers k such that no subset of the aliquot (1+e)-divisors of k sums to k.

Original entry on oeis.org

70, 836, 4030, 5830, 10430, 10570, 10990, 11410, 11690, 12110, 12530, 12670, 13370, 13510, 13790, 13930, 14770, 15610, 15890, 16030, 16310, 16730, 16870, 17570, 17990, 18410, 18830, 18970, 19390, 19670, 19810, 20510, 21490, 21770, 21910, 22190, 23170, 23590, 24290
Offset: 1

Views

Author

Amiram Eldar, Nov 13 2021

Keywords

Comments

The (1+e)-abundant numbers are numbers k such that A051378(k) > 2*k (union of A333928 and A349284).
Is there any number besides 836 which is in this sequence but not in A348631? - R. J. Mathar, Nov 16 2021
The next term after 836 that is not in A348631 is a(89) = 45356. - Amiram Eldar, Nov 21 2021

Crossrefs

Programs

  • Mathematica
    divQ[n_, m_] := (n > 0 && (m == 0 || Divisible[n, m])); oeDivQ[n_, d_] := Module[{f = FactorInteger[n]}, And @@ MapThread[divQ, {f[[;; , 2]], IntegerExponent[d, f[[;; , 1]]]}]]; oeDivs[1] = {1}; oeDivs[n_] := Module[{d = Divisors[n]}, Select[d, oeDivQ[n, #] &]]; oesigma[1] = 1; oesigma[n_] := Total@oeDivs[n]; oeAbundantQ[n_] := oesigma[n] > 2*n; oeWeirdQ[n_] := oeAbundantQ[n] && Module[{d = Most[oeDivs[n]]}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n] == 0]; Select[Range[12000], oeWeirdQ]

A383867 The sum of divisors d of n having the property that for every prime p dividing n the p-adic valuation of d is either 0 or a squarefree divisor of the p-adic valuation of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 11, 13, 18, 12, 28, 14, 24, 24, 7, 18, 39, 20, 42, 32, 36, 24, 44, 31, 42, 31, 56, 30, 72, 32, 35, 48, 54, 48, 91, 38, 60, 56, 66, 42, 96, 44, 84, 78, 72, 48, 28, 57, 93, 72, 98, 54, 93, 72, 88, 80, 90, 60, 168, 62, 96, 104, 79, 84, 144, 68
Offset: 1

Views

Author

Amiram Eldar, May 13 2025

Keywords

Comments

Analogous to the sum of (1+e)-divisors (A051378) as exponential squarefree exponential divisors (A383761, A361174) are analogous to exponential divisors (A322791, A051377).
The number of these divisors is A383863(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + DivisorSum[e, p^# &, SquareFreeQ[#] &]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + sumdiv(f[i, 2], d, if(issquarefree(d), f[i, 1]^d)));}

Formula

Multiplicative with a(p^e) = 1 + Sum_{d squarefree divisor of e} p^d.
a(n) <= A051378(n), with equality if and only if n is an exponentially squarefree number (A209061).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} f(1/p) = 1.47709589136345836345..., and f(x) = (1-x) * (1 + Sum_{k>=1} (1 + Sum{d|k, d squarefree} x^(2*k-d))).
Previous Showing 11-17 of 17 results.