cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A377324 E.g.f. satisfies A(x) = 1 + (exp(x*A(x)^3) - 1)/A(x).

Original entry on oeis.org

1, 1, 5, 52, 839, 18436, 513797, 17366224, 690366875, 31565619916, 1632064968929, 94159057903384, 5996889060457055, 417920884113926740, 31634205840603000221, 2584579552124805784672, 226699825143636127509347, 21247444370267806167804316, 2119206766514801966851437113
Offset: 0

Views

Author

Seiichi Manyama, Oct 24 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (3*n-k)!/(3*n-2*k+1)!*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (3*n-k)!/(3*n-2*k+1)! * Stirling2(n,k).

A377328 E.g.f. satisfies A(x) = 1 + A(x)^2 * (exp(x*A(x)^3) - 1).

Original entry on oeis.org

1, 1, 11, 250, 8789, 420646, 25536083, 1880370598, 162872596937, 16227667154806, 1828467483194975, 229904271890603014, 31913005486577248877, 4847412341607090455110, 799762918909215143560907, 142427688272456020835132518, 27231132645610171996487568017, 5563389652463220933157357670806
Offset: 0

Views

Author

Seiichi Manyama, Oct 25 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (3*n+2*k)!/(3*n+k+1)!*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (3*n+2*k)!/(3*n+k+1)! * Stirling2(n,k).

A377348 E.g.f. satisfies A(x) = 1 + (exp(x*A(x)^3) - 1)/A(x)^3.

Original entry on oeis.org

1, 1, 1, 10, 79, 946, 14653, 267478, 5817187, 145061146, 4089128425, 128703410254, 4470302200087, 169912192575490, 7014628977829237, 312570024564324358, 14952747796689292747, 764341021646724256426, 41578052013117358139809, 2398149800670737138081470
Offset: 0

Views

Author

Seiichi Manyama, Oct 26 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, (3*n+1)\4, (3*n-3*k)!/(3*n-4*k+1)!*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..floor((3*n+1)/4)} (3*n-3*k)!/(3*n-4*k+1)! * Stirling2(n,k).

A385059 E.g.f. A(x) satisfies A(x) = exp(x*A(x)/A(-x*A(x))^2).

Original entry on oeis.org

1, 1, 7, 40, 397, 2336, -46601, -2661896, -125428775, -3724273664, -90080842229, 1096530753176, 400257318802213, 36023363702572000, 2951479723885410943, 178834401869241704056, 8444450128124255913649, -59239960097902788177664, -92000068200778017857238125
Offset: 0

Views

Author

Seiichi Manyama, Jun 16 2025

Keywords

Crossrefs

Column k=1 of A385062.

Programs

  • PARI
    a(n, k=-1) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, (-n+k)^(j-1)*binomial(n, j)*a(n-j, 2*j)));

Formula

See A385062.

A385085 a(n) = 2 * (3*n+2)^(n-1).

Original entry on oeis.org

1, 2, 16, 242, 5488, 167042, 6400000, 296071778, 16063620352, 1000492825922, 70368744177664, 5517094707031250, 477144100447105024, 45126980600732372162, 4633559988356427808768, 513333972375334818668738, 61035156250000000000000000, 7752538100237033690795744642
Offset: 0

Views

Author

Seiichi Manyama, Jun 17 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-2/3*lambertw(-3*x))))

Formula

E.g.f.: exp(-2/3 * LambertW(-3*x)).
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A052752.
E.g.f. A(x) satisfies:
(1) A(x) = exp(2*x*A(x)^(3/2)).
(2) A(x) = 1/A(-x*A(x)^3).
Previous Showing 11-15 of 15 results.