cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 99 results. Next

A129236 A054525 * A129234.

Original entry on oeis.org

1, 1, 2, 2, 0, 3, 2, 1, 0, 4, 4, 0, 0, 0, 5, 2, 2, 1, 0, 0, 6, 6, 0, 0, 0, 0, 0, 7, 4, 2, 0, 1, 0, 0, 0, 8, 6, 0, 2, 0, 0, 0, 0, 0, 9, 4, 4, 0, 0, 1, 0, 0, 0, 0, 10
Offset: 1

Views

Author

Gary W. Adamson, Apr 05 2007

Keywords

Comments

Left border = phi(n), A000010: (1, 1, 2, 2, 4, 2, 6, ...). A129237 = inverse Moebius transform of A129234.

Examples

			First few rows of the triangle:
  1;
  1, 2;
  2, 0, 3;
  2, 1, 0, 4;
  4, 0, 0, 0, 5;
  2, 2, 1, 0, 0, 6;
  6, 0, 0, 0, 0, 0, 7;
  4, 2, 0, 1, 0, 0, 0, 8;
  ...
		

Crossrefs

Formula

A054525 * A129234 as infinite lower triangular matrices.

A134540 A054525 * A000012.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, -1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, -1, 0, 0, 0, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Oct 31 2007

Keywords

Comments

Row sums = phi(n), A000010: (1, 1, 2, 2, 4, 2, 6, 4, 6, 4, ...).

Examples

			First few rows of the triangle:
  1;
  0,  1;
  0,  1, 1;
  0,  0, 1, 1;
  0,  1, 1, 1, 1;
  0, -1, 0, 1, 1, 1;
  0,  1, 1, 1, 1, 1, 1;
  0,  0, 0, 0, 1, 1, 1, 1;
  0,  0, 0, 1, 1, 1, 1, 1, 1;
  0, -1, 0, 0, 0, 1, 1, 1, 1, 1;
  ...
		

Crossrefs

Cf. A054525.

Formula

A054525 * A000012 as infinite lower triangular matrices.
Triangle read by rows, partial sums of A054525 (the Mobius transform) terms starting from the right.

A140581 Triangle read by rows, A054525 * A140256.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 0, 1, 0, 1, 4, 0, 0, 0, 1, -3, 2, 1, 0, 0, 1, 6, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 1, -5, 4, 0, 0, 1, 0, 0, 0, 0, 1, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -3, 0, 20, 1, 0, 0, 0, 0, 0, 1, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -7, 6, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson and Mats Granvik, May 17 2008

Keywords

Comments

Row sums = A014963: (1, 2, 3, 2, 5, 1, 7, 2, 3, 1, 11, 1, 13, 1,...).

Examples

			First few rows of the triangle are:
1;
1, 1;
2, 0, 1;
0, 1, 0, 1;
4, 0, 0, 0, 1;
-3, 2, 1, 0, 0, 1;
6, 0, 0, 0, 0, 0, 1;
0, 0, 0, 1, 0, 0, 0, 1;
0, 0, 2, 0, 0, 0, 0, 0, 1;
...
		

Crossrefs

Formula

Mobius transform of triangle A140256 = A054525 * A140256; as infinite lower triangular matrices.

A127468 Triangle read by rows: matrix product A127466*A054525.

Original entry on oeis.org

1, 0, 2, -3, 0, 6, 0, -4, 0, 8, -15, 0, 0, 0, 20, 0, -6, 0, 0, 0, 12, -35, 0, 0, 0, 0, 0, 42, 0, -8, 0, -16, 0, 0, 0, 32, -9, 0, -36, 0, 0, 0, 0, 0, 54, 0, -30, 0, 0, 0, 0, 0, 0, 0, 40, -99, 0, 0, 0, 0, 0, 0, 0, 0, 0, 110, 0, 12, 0, -24, 0, -24, 0, 0, 0, 0, 0, 48
Offset: 1

Views

Author

Gary W. Adamson, Jan 15 2007

Keywords

Comments

The row sums are n, the index of the row.

Examples

			First few rows of the triangle are:
1;
0, 2;
-3, 0, 6;
0, -4, 0, 8;
-15, 0, 0, 0, 20;
0, -6, 0, 0, 0, 12;
-35, 0, 0, 0, 0, 0, 42;
...
		

Crossrefs

Programs

Formula

T(n,k) = sum_{j=k..n} A127466(n,j) * A054525(j,k).
T(n,n) = A002618(n).

A127569 Triangle read by rows: product of the Mobius matrix A054525 by the diagonal matrix diag(A000203(n)).

Original entry on oeis.org

1, -1, 3, -1, 0, 4, 0, -3, 0, 7, -1, 0, 0, 0, 6, 1, -3, -4, 0, 0, 12, -1, 0, 0, 0, 0, 0, 8, 0, 0, 0, -7, 0, 0, 0, 15, 0, 0, -4, 0, 0, 0, 0, 0, 13, 1, -3, 0, 0, -6, 0, 0, 0, 0, 18, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 3, 0, -7, 0, -12, 0, 0, 0, 0, 0, 28, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 1, -3, 0, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 24, 1, 0, -4, 0, -6, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 19 2007

Keywords

Comments

Left column = mu(n), A008683; right border = sigma(n), A000203; row sums = n.
The definition of Mobius transform is extended to matrices here in the sense of "left multiplication by the Mobius matrix A054525". - R. J. Mathar, Oct 02 2007

Examples

			First few rows of the triangle are:
1;
-1, 3;
-1, 0, 4;
0, -3, 0, 7;
-1, 0, 0, 0, 6;
1, -3, -4, 0, 0, 12;
...
		

Crossrefs

Programs

  • Maple
    A000203T := proc(n,k) if n = k then numtheory[sigma](n) ; else 0 ; fi ; end: A054525 := proc(n,k) if n < 1 or k > n or n mod k <> 0 then 0; else numtheory[mobius](n/k) ; fi ; end: A127569 := proc(n,k) add(A054525(n,i)*A000203T(i,k),i=1..n) ; end: for n from 1 to 15 do for k from 1 to n do printf("%a, ",A127569(n,k)) ; od: od: # R. J. Mathar, Oct 02 2007

Formula

T(n,k)=A054525(n,k)*A000203(k). - R. J. Mathar, Oct 02 2007

Extensions

Missing comma corrected by Naruto Canada, Aug 26 2007
More terms from R. J. Mathar, Oct 02 2007

A127704 A054525 * A127701.

Original entry on oeis.org

1, 0, 2, -1, 1, 3, -1, -2, 1, 4, -1, 0, 0, 1, 5, 0, -3, -3, 0, 1, 6, -1, 0, 0, 0, 0, 1, 7, 0, 0, -1, -4, 0, 0, 1, 8, 0, -1, -3, 0, 0, 0, 0, 1, 9, 0, -2, 0, -1, -5, 0, 0, 0, 1, 10, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 11, 1, 2, -1, -4, -1, -6, 0, 0, 0, 0, 1, 12, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 13, 0, -2
Offset: 1

Views

Author

Gary W. Adamson, Jan 24 2007

Keywords

Comments

Moebius transform of A127701.
Row sums = A127705: (1, 2, 3, 2, 5, 1, 7, 4, 6, 3, ...)

Examples

			First few rows of the triangle are:
   1;
   0,  2;
  -1,  1,  3;
  -1, -2,  1,  4;
  -1,  0,  0,  1,  5;
   0, -3, -3,  0,  1,  6;
  -1,  0,  0,  0,  0,  1,  7;
  ...
		

Crossrefs

Programs

  • Maple
    A054525 := proc(n,k) if n>=1 and 1<=k and k <= n then if n mod k = 0 then numtheory[mobius](n/k) ; else 0 ; fi; else 0 ; fi; end: A127701 := proc(n,k) if n<1 or k<1 or k > n then 0 ; elif n = k then n; elif k+ 1 =n then 1; else 0 ; fi; end: A127704 := proc(n,k) add( A054525(n,i)*A127701(i,k),i=1..n) ; end: for n from 1 to 30 do for k from 1 to n do printf("%d,",A127704(n,k)) ; od: od: # R. J. Mathar, Jul 21 2009

Extensions

More terms from R. J. Mathar, Jul 21 2009

A130027 A130026 * A054525.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 1, 2, 0, 1, 4, 0, 0, 0, 1, -2, 4, 3, 0, 0, 1, 6, 0, 0, 0, 0, 0, 1, 1, 2, 0, 4, 0, 0, 0, 1, 2, 0, 6, 0, 0, 0, 0, 0, 1, -4, 8, 0, 0, 5, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, May 02 2007

Keywords

Comments

Row sums = (1, 2, 3, ...). Left column = signed version of A070777.

Examples

			First few rows of the triangle:
   1;
   1, 1;
   2, 0, 1;
   1, 2, 0, 1;
   4, 0, 0, 0, 1;
  -2, 4, 3, 0, 0, 1;
   6, 0, 0, 0, 0, 0, 1;
   1, 2, 0, 4, 0, 0, 0, 1;
  ...
		

Crossrefs

Formula

A130026 * A054525 as infinite lower triangular matrices.

A131088 2*A051731 - A054525 as infinite lower triangular matrices.

Original entry on oeis.org

1, 3, 1, 3, 0, 1, 2, 3, 0, 1, 3, 0, 0, 0, 1, 1, 3, 3, 0, 0, 1, 3, 0, 0, 0, 0, 0, 1, 2, 2, 0, 3, 0, 0, 0, 1, 2, 0, 3, 0, 0, 0, 0, 0, 1, 1, 3, 0, 0, 3, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 3, 0, 3, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Jun 14 2007

Keywords

Comments

Row sums = A131089.
A131090: (1, 3, 3, 2, 3, 1, 3, 2, 2, 1, ...) in every column interspersed with (k-1) zeros.

Examples

			First few rows of the triangle:
  1;
  3, 1;
  3, 0, 1;
  2, 3, 0, 1;
  3, 0, 0, 0, 1;
  1, 3, 3, 0, 0, 1
  3, 0, 0, 0, 0, 0, 1;
  2, 2, 0, 3, 0, 0, 0, 1;
  ...
		

Crossrefs

Cf. A129979 (left border), A131089 (row sums), A051731, A054525.

Programs

  • PARI
    T(n,k) = 2*!(n%k) - if (!(n % k), moebius(n/k), 0);
    row(n) = vector(n, k, T(n,k));
    lista(nn) = for (n=1, nn, v = row(n); for (k=1, #v, print1(v[k], ", "))); \\ Michel Marcus, Feb 26 2022

Extensions

More terms from Michel Marcus, Feb 26 2022

A133732 A054525 * A000041.

Original entry on oeis.org

1, 0, 1, 2, 4, 5, 10, 12, 20, 25, 41, 47, 76, 90, 129, 161, 230, 270, 384, 458, 615, 750, 1001, 1187, 1570, 1881, 2414, 2907, 3717, 4400, 5603, 6666, 8306, 9912, 12295, 14537, 17976, 21252, 25937, 30683, 37337, 43861, 53173, 62467, 75020, 88132
Offset: 1

Views

Author

Gary W. Adamson, Sep 22 2007

Keywords

Comments

A000041 = (1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, ...).

Examples

			a(4) = 2 = (0, -1, 0, 1) dot (1, 1, 2, 3) = (0, -1, 0, 3).
		

Crossrefs

Cf. A054525.

Programs

  • Maple
    read("transforms") : A000041 := proc(n) combinat[numbpart](n) ; end: a000041 := [seq(A000041(n),n=0..150)] ; a133732 := MOBIUS(a000041) ; # R. J. Mathar, Jan 19 2009
    mob := (m,n) -> if irem(m,n) = 0 then numtheory:-mobius(m/n) else 0 fi:
    A133732 := n -> add(mob(n,d)*combinat:-numbpart(d-1), d=1..n):
    seq(A133732(n), n=1..46); # Peter Luschny, Jan 20 2018
  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#]*PartitionsP[#-1]&];
    Table[a[n], {n, 1, 45}] (* Jean-François Alcover, Jan 20 2018 *)

Formula

Möbius transform of A000041, the partition numbers.

Extensions

More terms from R. J. Mathar, Jan 19 2009
Offset set to 1 by Peter Luschny, Jan 20 2018

A137585 Triangle read by rows: A054525 * A026794.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 4, 1, 0, 0, 1, 5, 1, 0, 0, 0, 1, 10, 2, 1, 0, 0, 0, 1, 12, 3, 1, 0, 0, 0, 0, 1, 20, 4, 1, 1, 0, 0, 0, 0, 1, 25, 5, 2, 1, 0, 0, 0, 0, 0, 1, 41, 8, 3, 1, 1, 0, 0, 0, 0, 0, 1, 47, 10, 3, 1, 1, 0, 0, 0, 0, 0, 0, 1, 76, 14, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 27 2008

Keywords

Comments

Row sums = A000837 starting (1, 1, 2, 3, 6, 7, 14, 17, ...).

Examples

			First few rows of the triangle:
   1;
   0, 1;
   1, 0, 1;
   2, 0, 0, 1;
   4, 1, 0, 0, 1;
   5, 1, 0, 0, 0, 1;
  10, 2, 1, 0, 0, 0, 1;
  12, 3, 1, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Formula

Mobius transform of A026794, the partition triangle.
Previous Showing 11-20 of 99 results. Next