cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-43 of 43 results.

A276639 Triangle T(m, n) = the number of point-labeled graphs with n points and m edges, no points isolated. By rows, n >= 0, ceiling(n/2) <= m <= binomial(n,2).

Original entry on oeis.org

1, 1, 3, 1, 3, 16, 15, 6, 1, 30, 135, 222, 205, 120, 45, 10, 1, 15, 330, 1581, 3760, 5715, 6165, 4945, 2997, 1365, 455, 105, 15, 1, 315, 4410, 23604, 73755, 159390, 259105, 331716, 343161, 290745, 202755, 116175, 54257, 20349, 5985, 1330, 210, 21, 1
Offset: 1

Views

Author

David Pasino, Sep 08 2016

Keywords

Comments

The row sums are A006129, omitting row 1 and A006129(1).

Examples

			Triangle T(n, m) begins:
n/m  0  1  2  3   4    5    6    7    8    9   10
0    1  0  0  0   0    0    0    0    0    0   0
1    0  0  0  0   0    0    0    0    0    0   0
2    0  1  0  0   0    0    0    0    0    0   0
3    0  0  3  1   0    0    0    0    0    0   0
4    0  0  3  16  15   6    1    0    0    0   0
5    0  0  0  30  135  222  205  120  45   10  1
		

Crossrefs

Another version is A054548.

Programs

  • Mathematica
    Table[Sum[Binomial[n, k] (-1)^(n - k) Binomial[Binomial[k, 2], m], {k, 0, n}], {n, 7}, {m, Ceiling[n/2], Binomial[n, 2]}] /. {} -> {1} // Flatten (* Michael De Vlieger, Sep 19 2016 *)

Formula

T(n, m) = Sum_{k=0,..n} binomial(n, k) * (-1)^(n-k) * A084546(k, m).

A369198 Number of labeled loop-graphs with n vertices and the same number of edges as covered vertices.

Original entry on oeis.org

1, 2, 6, 30, 241, 2759, 40824, 736342, 15622835, 380668095, 10467815086, 320529284621, 10813165015074, 398413594789777, 15917197015926392, 685312404706694574, 31631317971844128229, 1558017329350990780607, 81567807853701988869120, 4522975947689168088308305
Offset: 0

Views

Author

Gus Wiseman, Jan 18 2024

Keywords

Examples

			The a(0) = 1 through a(3) = 30 loop-graphs (loops shown as singletons):
  {}  {}     {}           {}
      {{1}}  {{1}}        {{1}}
             {{2}}        {{2}}
             {{1},{2}}    {{3}}
             {{1},{1,2}}  {{1},{2}}
             {{2},{1,2}}  {{1},{3}}
                          {{2},{3}}
                          {{1},{1,2}}
                          {{1},{1,3}}
                          {{2},{1,2}}
                          {{2},{2,3}}
                          {{3},{1,3}}
                          {{3},{2,3}}
                          {{1},{2},{3}}
                          {{1},{2},{1,3}}
                          {{1},{2},{2,3}}
                          {{1},{3},{1,2}}
                          {{1},{3},{2,3}}
                          {{2},{3},{1,2}}
                          {{2},{3},{1,3}}
                          {{1},{1,2},{1,3}}
                          {{1},{1,2},{2,3}}
                          {{1},{1,3},{2,3}}
                          {{2},{1,2},{1,3}}
                          {{2},{1,2},{2,3}}
                          {{2},{1,3},{2,3}}
                          {{3},{1,2},{1,3}}
                          {{3},{1,2},{2,3}}
                          {{3},{1,3},{2,3}}
                          {{1,2},{1,3},{2,3}}
		

Crossrefs

The version counting all vertices is A014068.
The loopless case is A367862, counting all vertices A116508.
The covering case is A368597, connected A368951.
With inequality we have A369196, covering A369194, connected A369197.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts simple graphs, also loop-graphs if shifted left.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A322661 counts covering loop-graphs, unlabeled A322700.
A368927 counts choosable loop-graphs, covering A369140.
A369141 counts non-choosable loop-graphs, covering A369142.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}]], Length[#]==Length[Union@@#]&]],{n,0,5}]

Formula

Binomial transform of A368597.

A386399 Number of forests with at most n unlabeled nodes.

Original entry on oeis.org

1, 2, 4, 7, 13, 23, 43, 80, 156, 309, 638, 1348, 2949, 6607, 15206, 35720, 85625, 208588, 515787, 1291316, 3269194, 8355832, 21539988, 55942920, 146271594, 384746580, 1017522228, 2704227858, 7219183490, 19351410860, 52068524665, 140588391713, 380824067016
Offset: 0

Views

Author

Max Alekseyev, Jul 20 2025

Keywords

Crossrefs

Formula

G.f.: exp(sum_{k>0} B(x^k)/k ) / (1-x), where B(x) = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + ... = C(x)-1 and C is the g.f. for A000055.
Previous Showing 41-43 of 43 results.