cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A054839 Sixth term of weak prime septet: p(m-4)-p(m-5) < p(m-3)-p(m-4) < p(m-2)-p(m-3) < p(m-1)-p(m-2) < p(m)-p(m-1) < p(m+1)-p(m).

Original entry on oeis.org

15413, 64969, 68239, 68927, 129011, 129023, 143551, 154127, 158047, 192431, 221747, 222461, 244507, 249779, 285377, 318713, 337313, 354401, 357913, 374239, 385433, 394759, 402613, 402631, 419651, 439217, 441971, 448451, 457433, 457711, 458239, 482539, 528013
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Crossrefs

Cf. A051635; A054800 .. A054803: members of balanced prime quartets (= consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime quartets, quintets, sextets; A054819 .. A054840: members of weak prime quartets, quintets, sextets, septets.

Programs

  • Mathematica
    Transpose[Select[Partition[Prime[Range[50000]],7,1],Min[ Differences[ #,2]]> 0&]][[6]] (* Harvey P. Dale, Sep 27 2015 *)

Formula

a(n) = A151800(A054838(n)) = A151799(A054840(n)), A054839 = { m = A054832(n) | m = A151800(A054832(n-1)) } (A151800: nextprime, A151799: prevprime). - M. F. Hasler, Oct 27 2018

Extensions

More terms from Harvey P. Dale, Sep 27 2015

A054811 Fourth term of strong prime quintets: p(m-2)-p(m-3) > p(m-1)-p(m-2) > p(m)-p(m-1) > p(m+1)-p(m).

Original entry on oeis.org

1667, 1787, 1867, 1871, 1997, 2381, 2473, 2531, 2539, 3457, 3461, 4217, 4517, 5279, 5417, 5441, 6043, 6659, 7243, 7307, 7757, 7877, 7933, 8167, 8521, 9613, 9619, 11057, 11393, 11593, 11831, 12409, 13877, 14827, 15137, 15551, 16061, 16333
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Comments

First member of pairs of consecutive primes in A054807 (4th of strong prime quartets). - M. F. Hasler, Oct 27 2018

Crossrefs

Cf. A051634, A051635; A054800 .. A054803: members of balanced prime quartets (= 4 consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime quartets, quintets, sextets; A054819 .. A054840: members of weak prime quartets, quintets, sextets, septets.

Formula

a(n) = nextprime(A054810(n)) = prevprime(A054812(n)), nextprime = A151800, prevprime = A151799; A054811 = {m = A054807(n) | nextprime(m) = A054807(n+1)}. - M. F. Hasler, Oct 27 2018

A054812 Fifth term of strong prime quintets: p(m-3)-p(m-4) > p(m-2)-p(m-3) > p(m-1)-p(m-2) > p(m)-p(m-1).

Original entry on oeis.org

1669, 1789, 1871, 1873, 1999, 2383, 2477, 2539, 2543, 3461, 3463, 4219, 4519, 5281, 5419, 5443, 6047, 6661, 7247, 7309, 7759, 7879, 7937, 8171, 8527, 9619, 9623, 11059, 11399, 11597, 11833, 12413, 13879, 14831, 15139, 15559, 16063, 16339
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Comments

Second member of pairs of consecutive primes in A054807 (4th term of strong prime quartets). - M. F. Hasler, Oct 27 2018

Crossrefs

Cf. A051634, A051635; A054800 .. A054803: members of balanced prime quartets (= 4 consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime quartets, quintets, sextets; A054819 .. A054840: members of weak prime quartets, quintets, sextets, septets.

Programs

  • Mathematica
    spqQ[c_]:=Module[{d=Differences[c]},d[[1]]>d[[2]]>d[[3]]>d[[4]]]; Transpose[ Select[Partition[Prime[Range[2000]],5,1],spqQ]][[5]] (* Harvey P. Dale, Jan 01 2013 *)

Formula

a(n) = nextprime(A054811(n)); A054811 = {m = A054807(n) | prevprime(m) = A054807(n-1)}; nextprime = A151800, prevprime = A151799. - M. F. Hasler, Oct 27 2018

A054813 First term of strong prime sextets: p(m+1)-p(m) > p(m+2)-p(m+1) > p(m+3)-p(m+2) > p(m+4)-p(m+3) > p(m+5)-p(m+4).

Original entry on oeis.org

1831, 2477, 3413, 9551, 21433, 22973, 25189, 26053, 32143, 33359, 33893, 39047, 40771, 41203, 44221, 47251, 48787, 55849, 57751, 66977, 70079, 74231, 74653, 74687, 75083, 75109, 82913, 84263, 87811, 88339, 88609, 103723, 103843, 106219, 106921, 108139, 110881, 112979, 118093
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Crossrefs

Cf. A051634, A051635; A054800 .. A054803: members of balanced prime quartets (= consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime quartet, quintet, sextet; A054819 .. A054840: members of weak prime quartet, quintet, sextet, septets.

Formula

a(n) = A151799(A054814(n)), A054813 = { m = A054808(n) | m = A151799(A054808(n+1)) }, where A151799 = next smaller prime. - M. F. Hasler, Oct 27 2018

Extensions

More terms and offset corrected to 1 by M. F. Hasler, Oct 27 2018

A054814 Second term p(m) of strong prime sextets: p(m)-p(m-1) > p(m+1)-p(m) > p(m+2)-p(m+1) > p(m+3)-p(m+2) > p(m+4)-p(m+3).

Original entry on oeis.org

1847, 2503, 3433, 9587, 21467, 22993, 25219, 26083, 32159, 33377, 33911, 39079, 40787, 41213, 44249, 47269, 48799, 55871, 57773, 67003, 70099, 74257, 74687, 74699, 75109, 75133, 82939, 84299, 87833, 88379, 88643, 103769, 103867, 106243, 106937, 108161, 110899, 112997, 118127, 120371
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Crossrefs

Cf. A051634, A051635; A054800 .. A054803: members of balanced prime quartets (= consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime quartet, quintet, sextet; A054819 .. A054840: members of weak prime quartet, quintet, sextet, septets.
Subsequence of A054808.

Programs

  • Mathematica
    Select[Partition[Prime[Range[12000]],6,1],Max[Differences[#,2]]<0&][[;;,2]] (* Harvey P. Dale, Jun 17 2023 *)

Formula

a(n) = A151800(A054813(n)) = A151799(A054815(n)), A151800 = nextprime, A151799 = prevprime; A054814 = { m = A054809(n) | m = nextprime(A054809(n-1)) }. - M. F. Hasler, Oct 27 2018

Extensions

Edited and offset changed to 1 by M. F. Hasler, Oct 26 2018

A054833 Sixth term of weak prime sextet: p(m-4)-p(m-5) < p(m-3)-p(m-4) < p(m-2)-p(m-3) < p(m-1)-p(m-2) < p(m)-p(m-1).

Original entry on oeis.org

2953, 13513, 13931, 15013, 15413, 15427, 21467, 21587, 21911, 28307, 30931, 33287, 35671, 37781, 42281, 42641, 45853, 55691, 64709, 64969, 64997, 68239, 68261, 68927, 68947, 73999, 74257, 78643, 83177, 85571, 87383, 88069, 90971, 91621, 92297, 97073, 106853, 118529, 119083, 127807, 129011
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Crossrefs

Cf. A051635; A054800 .. A054803: members of balanced prime quartets (= consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime quartets, quintets, sextets; A054819 .. A054840: members of weak prime quartets, quintets, sextets, septets.

Programs

  • Mathematica
    Transpose[Select[Partition[Prime[Range[9000]],6,1],And@@Positive[ Differences[ #,2]]&]][[6]] (* Harvey P. Dale, Nov 06 2011 *)

Formula

a(n) = A151800(A054832(n)). - M. F. Hasler, Oct 27 2018

A054834 First term of weak prime septet: p(m+1)-p(m) < p(m+2)-p(m+1) < p(m+3)-p(m+2) < p(m+4)-p(m+3) < p(m+5)-p(m+4) < p(m+6)-p(m+5).

Original entry on oeis.org

15373, 64919, 68207, 68897, 128981, 128983, 143509, 154079, 157999, 192373, 221717, 222379, 244457, 249721, 285287, 318677, 337277, 354371, 357823, 374173, 385391, 394727, 402581, 402583, 419597, 439157, 441907, 448373, 457397, 457669, 458189, 482507, 527981, 529811, 577529, 582761, 655909
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Crossrefs

Cf. A051635; A054800 .. A054803: members of balanced prime quartets (= consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime quartet, quintet, sextet; A054819 .. A054840: members of weak prime quartet, quintet, sextet, septets.

Programs

  • Mathematica
    Select[Partition[Prime[Range[54000]],7,1],Min[Differences[#,2]]>0&][[All,1]] (* Harvey P. Dale, Mar 16 2020 *)

Formula

a(n) = A151799(A054835(n)), A151799 = prevprime; A054834 = { m = A054828(n) | m = prevprime(A054828(n+1)) }. - M. F. Hasler, Oct 27 2018

Extensions

More terms from M. F. Hasler, Oct 27 2018

A054837 Fourth term of weak prime septet: p(m-2)-p(m-3) < p(m-1)-p(m-2) < p(m)-p(m-1) < p(m+1)-p(m) < p(m+2)-p(m+1) < p(m+3)-p(m+2).

Original entry on oeis.org

15391, 64937, 68219, 68909, 128993, 129001, 143527, 154097, 158017, 192391, 221729, 222419, 244481, 249749, 285317, 318691, 337291, 354383, 357859, 374203, 385403, 394739, 402593, 402601, 419609, 439183, 441937, 448397, 457411, 457687, 458207, 482519, 527993
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Crossrefs

Cf. A051635; A054800 .. A054803: members of balanced prime quartets (= consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime quartet, quintet, sextet; A054819 .. A054840: members of weak prime quartet, quintet, sextet, septets.

Programs

  • Mathematica
    Transpose[Select[Partition[Prime[Range[100000]],7,1],Min[ Differences[ #,2]] > 0&]][[4]] (* Harvey P. Dale, Aug 29 2013 *)

Formula

a(n) = A151800(A054836(n)) = A151799(A054838(n)), A151800 = nextprime, A151799 = prevprime; A054837 = { m = A054830(n) | m = nextprime(A054830(n-1)) }. - M. F. Hasler, Oct 27 2018

Extensions

More terms from Harvey P. Dale, Aug 29 2013

A366414 Primes p such that p and the four previous primes are in arithmetic progression.

Original entry on oeis.org

9843139, 37772549, 53868769, 71427877, 78364669, 79080697, 98150141, 99591553, 104437009, 106457629, 111267539, 121174931, 121174961, 168236239, 199450219, 203909011, 207068923, 216618307, 230952979, 234058991, 235524901, 253412437, 263651281, 268843153, 294485483, 296239907
Offset: 1

Views

Author

Harvey P. Dale, Oct 09 2023

Keywords

Examples

			9843019, 9843049, 9843079, 9843109, 9843139 are the 5 consecutive primes starting from A059044(1) and ending at a(1).
		

Crossrefs

Programs

  • Mathematica
    Select[Partition[Prime[Range[10^7]],5,1],Length[Union[Differences[#]]]==1&][[;;,5]]
Previous Showing 11-19 of 19 results.