cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-42 of 42 results.

A295149 Numbers n such that gcd(A002487(n), A002487(n+2)) > 1.

Original entry on oeis.org

5, 11, 23, 33, 45, 47, 49, 61, 73, 85, 95, 105, 117, 153, 163, 165, 187, 191, 195, 217, 219, 229, 257, 259, 269, 271, 273, 283, 285, 313, 325, 339, 353, 363, 365, 367, 369, 381, 383, 385, 397, 399, 401, 403, 413, 427, 441, 453, 481, 483, 493, 495, 497, 507
Offset: 1

Views

Author

Rémy Sigrist, Nov 15 2017

Keywords

Comments

All terms are odd (as for any k > 0, gcd(A002487(2*k), A002487(2*k+2)) = gcd(A002487(k), A002487(k+1)) = 1).
This sequence is infinite as it contains A055010(n) for any n > 1.
For any n > 1, gcd(A002487(A055010(n)), A002487(A055010(n)+2)) = 2*n-1.
For any n > 0, gcd(A002487(a(n)), A002487(a(n)+2)) is odd (as A002487(k) is even iff k is divisible by 3).

Crossrefs

Programs

  • PARI
    fusc(n)=local(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); b \\ after Charles R Greathouse IV at A002487
    for (n=1, 507, if (gcd(fusc(n),fusc(n+2))>1, print1 (n", ")))

A336337 Total number of records over all length n ternary words (words on alphabet {0,1,2}).

Original entry on oeis.org

0, 3, 12, 41, 132, 413, 1272, 3881, 11772, 35573, 107232, 322721, 970212, 2914733, 8752392, 26273561, 78853452, 236625893, 710008752, 2130288401, 6391389492, 19175217053, 57527748312, 172587439241, 517770706332, 1553328896213, 4660020243072, 13980127838081
Offset: 0

Views

Author

Geoffrey Critzer, Jul 18 2020

Keywords

Comments

A record in a word a_1,a_2,...,a_n is a letter a_j that is larger than all the preceding letters. That is, a_j>a_i for all i

Crossrefs

Programs

  • Mathematica
    nn = 25; Range[0, nn]!; CoefficientList[Series[D[Product[1 + v z/(1 - j z), {j, 1, 3}], v] /. v -> 1, {z, 0, nn}], z]

Formula

O.g.f.: x*(-3 + 6*x - 2*x^2)/(-1 + 6*x - 11*x^2 + 6*x^3) = d/dy A(x,y)|y=1 where A(x,y) is the o.g.f. for A285852.
a(n) = Sum_{k=0..3} A285852(n,k)*k.
a(n) = 11/2*3^(n-1)-2^n-1/2, n>0. - R. J. Mathar, Aug 19 2022
Previous Showing 41-42 of 42 results.