cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A236331 Positive integers n such that x^2 - 18xy + y^2 + n = 0 has integer solutions.

Original entry on oeis.org

64, 256, 320, 576, 704, 1024, 1216, 1280, 1600, 1856, 1984, 2304, 2624, 2816, 2880, 3136, 3520, 3776, 3904, 4096, 4544, 4864, 5056, 5120, 5184, 5696, 6080, 6336, 6400, 6464, 6976, 7424, 7744, 7936, 8000, 8384, 8896, 9216, 9280, 9536, 9664, 9920, 10496, 10816
Offset: 1

Views

Author

Colin Barker, Feb 16 2014

Keywords

Examples

			64 is in the sequence because x^2 - 18xy + y^2 + 64 = 0 has integer solutions, for example (x, y) = (1, 13).
		

Crossrefs

Cf. A001519 (n = 64), A052995 (n = 256), A055819 (n = 256), A005248 (n = 320), A237132 (n = 704), A237133 (n = 1216).

A237133 Values of x in the solutions to x^2 - 3xy + y^2 + 19 = 0, where 0 < x < y.

Original entry on oeis.org

4, 5, 7, 11, 17, 28, 44, 73, 115, 191, 301, 500, 788, 1309, 2063, 3427, 5401, 8972, 14140, 23489, 37019, 61495, 96917, 160996, 253732, 421493, 664279, 1103483, 1739105, 2888956, 4553036, 7563385, 11920003, 19801199, 31206973, 51840212, 81700916, 135719437
Offset: 1

Views

Author

Colin Barker, Feb 04 2014

Keywords

Comments

The corresponding values of y are given by a(n+2).
Positive values of x (or y) satisfying x^2 - 18xy + y^2 + 1216 = 0.

Examples

			11 is in the sequence because (x, y) = (11, 28) is a solution to x^2 - 3xy + y^2 + 19 = 0.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,3,0,-1},{4,5,7,11},40] (* Harvey P. Dale, Dec 15 2014 *)
  • PARI
    Vec(-x*(x-1)*(4*x^2+9*x+4)/((x^2-x-1)*(x^2+x-1)) + O(x^100))

Formula

a(n) = 3*a(n-2)-a(n-4).
G.f.: -x*(x-1)*(4*x^2+9*x+4) / ((x^2-x-1)*(x^2+x-1)).
a(n) = (1/2) * (F(n+4) + (-1)^n*F(n-5)), n>4, with F the Fibonacci numbers (A000045). - Ralf Stephan, Feb 05 2014

A218735 Values of x in the solutions to x^2 - 3xy + y^2 + 29 = 0, where 0 < x < y.

Original entry on oeis.org

5, 6, 9, 13, 22, 33, 57, 86, 149, 225, 390, 589, 1021, 1542, 2673, 4037, 6998, 10569, 18321, 27670, 47965, 72441, 125574, 189653, 328757, 496518, 860697, 1299901, 2253334, 3403185, 5899305, 8909654, 15444581, 23325777, 40434438, 61067677, 105858733
Offset: 1

Views

Author

Colin Barker, Feb 05 2014

Keywords

Comments

The corresponding values of y are given by a(n+2).
Positive values of x (or y) satisfying x^2 - 18xy + y^2 + 1856 = 0.

Examples

			13 is in the sequence because (x, y) = (13, 33) is a solution to x^2 - 3xy + y^2 + 29 = 0.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,3,0,-1},{5,6,9,13},40] (* Harvey P. Dale, Nov 30 2024 *)
  • PARI
    Vec(-x*(x-1)*(5*x^2+11*x+5)/((x^2-x-1)*(x^2+x-1)) + O(x^100))

Formula

a(n) = 3*a(n-2)-a(n-4).
G.f.: -x*(x-1)*(5*x^2+11*x+5) / ((x^2-x-1)*(x^2+x-1)).

A105292 Triangle read by rows: T(n,k) is the number of directed column-convex polyominoes of area n, having leftmost column of height k.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 4, 3, 1, 13, 10, 6, 4, 1, 34, 26, 15, 8, 5, 1, 89, 68, 39, 20, 10, 6, 1, 233, 178, 102, 52, 25, 12, 7, 1, 610, 466, 267, 136, 65, 30, 14, 8, 1, 1597, 1220, 699, 356, 170, 78, 35, 16, 9, 1, 4181, 3194, 1830, 932, 445, 204, 91, 40, 18, 10, 1, 10946, 8362
Offset: 1

Views

Author

Emeric Deutsch, Apr 25 2005

Keywords

Comments

T(n,k) is the number of nondecreasing Dyck paths of semilength n, having height of leftmost peak equal to k. Example: T(3,2)=2 because we have UUDDUD and UUDUDD, where U=(1,1) and D(1,-1). Sum of row n = fibonacci(2n-1) (A001519). T(n,1)=fibonacci(2n-3) (A001519). Column 2 yields A055819.

Examples

			Triangle begins:
  1;
  1,1;
  2,2,1;
  5,4,3,1;
  13,10,6,4,1;
		

Crossrefs

Programs

  • Maple
    with(combinat):T:=proc(n,k) if k
    				
  • Mathematica
    Flatten[Join[{1},#]&/@Table[k*Fibonacci[2n-2k-1],{n,15},{k,n-1}]] (* Harvey P. Dale, Aug 21 2013 *)

Formula

T(n, k)=k*fibonacci(2n-2k-1) if k
Previous Showing 11-14 of 14 results.