cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-43 of 43 results.

A328510 Smallest number whose divisors have n non-singleton runs.

Original entry on oeis.org

1, 2, 20, 90, 630, 1260, 3780, 21420, 41580, 128520, 270270, 554400, 706860, 1413720, 2042040, 4324320, 4084080, 9189180, 6126120, 43825320, 12252240, 18378360, 82162080, 36756720, 85765680, 73513440, 183783600, 306306000, 257297040, 563603040, 514594080
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2019

Keywords

Examples

			The sequence of terms together with their non-singleton runs of divisors begins:
    1: {}
    2: {{1,2}}
   20: {{1,2},{4,5}}
   90: {{1,2,3},{5,6},{9,10}}
  630: {{1,2,3},{5,6,7},{9,10},{14,15}}
		

Crossrefs

Equal {1} followed by the positions of first appearances in A328511 (times 2).
The longest run of divisors of n has length A055874.
Numbers whose divisors have no non-singleton runs are A005408.
The number of successive pairs of divisors of n is A129308(n).
The number of singleton runs of divisors is A132881.

Programs

  • Mathematica
    dv=Table[Length[DeleteCases[Length/@Split[Divisors[n],#2==#1+1&],1]],{n,1000}];
    Table[Position[dv,i][[1,1]],{i,Union[dv]}]

Extensions

Offset changed to 0 and a(10)-a(30) added by Giovanni Resta, Oct 25 2019

A328511 Number of non-singleton runs of divisors of 2n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Oct 18 2019

Keywords

Examples

			The divisors of 90 have runs: {{1, 2, 3}, {5, 6}, {9, 10}, {15}, {18}, {30}, {45}, {90}}, so a(45) = 3.
		

Crossrefs

Positions of first appearances are A328510.
The longest run of divisors of n has length A055874.
Numbers whose divisors have no non-singleton runs are A005408.
The number of successive pairs of divisors of n is A129308(n).
The number of singleton runs of divisors is A132881.

Programs

  • Maple
    f:= proc(n) local D,B,R;
      D:= sort(convert(numtheory:-divisors(2*n),list));
      B:= D[2..-1]-D[1..-2];
      R:= select(j -> (j=1 or B[j-1]>1) and B[j]=1, [$1..nops(B)]);
      nops(R);
    end proc:
    map(f, [$1..100]); # Robert Israel, Oct 25 2019
  • Mathematica
    Table[Length[DeleteCases[Length/@Split[Divisors[2*n],#2==#1+1&],1]],{n,100}]

A368777 a(n) is the largest divisor of n that is a term of the sequence A003418, the least common multiple of the first k natural numbers.

Original entry on oeis.org

1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 60, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 12
Offset: 1

Views

Author

Hal M. Switkay, Jan 11 2024

Keywords

Comments

The graph of this sequence gives it the appearance of a ruler-like function. If n is odd, a(n) = 1. If n is even and not a multiple of 6, a(n) = 2. If n is a multiple of 6 but not of 12, a(n) = 6, and so on.

Examples

			a(18) = 6 as 18 is divisible by lcm(1, 2, 3) = 6 but not by lcm(1, 2, 3, 4) = 12. so 6 is the largest divisor of 18 that is a term of A003418. - _David A. Corneth_, Jan 28 2024
		

Crossrefs

Programs

  • Mathematica
    seq[max_] := Module[{lcms = Table[LCM @@ Range[k], {k, max}]}, Table[Max[Select[Divisors[k], MemberQ[lcms, #] &]], {k, 1, max}]]; seq[100] (* Amiram Eldar, Jan 12 2024 *)
  • PARI
    a(n) = for(i = 2, n, if(n%i != 0, return(lcm([1..i-1])))); n \\ David A. Corneth, Jan 27 2024

Formula

a(n) = A003418(A055874(n))
Previous Showing 41-43 of 43 results.