A023671 Convolution of A023533 and A014306.
0, 1, 1, 0, 2, 2, 1, 2, 2, 1, 3, 3, 1, 3, 3, 3, 3, 3, 2, 2, 4, 4, 2, 4, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4, 3, 5, 5, 3, 4, 5, 5, 5, 5, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 5, 4, 6, 6, 4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 5, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 6, 5, 7, 7, 5, 7, 7, 5
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Magma
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >; [(&+[(1-A023533(k))*A023533(n+1-k): k in [1..n]]): n in [1..100]]; // G. C. Greubel, Jul 18 2022
-
Mathematica
A023533[n_]:= If[Binomial[Floor[Surd[6*n-1, 3]] + 2, 3] != n, 0, 1]; A023671[n_]:= A023613[n]= Sum[(1-A023533[k])*A023533[n-k+1], {k,n}]; Table[A023671[n], {n, 100}] (* G. C. Greubel, Jul 18 2022 *)
-
Sage
@CachedFunction def A023533(n): return 1 if binomial(floor((6*n-1)^(1/3)) +2, 3)!=n else 0 def A023671(n): return sum((1-A023533(k))*A023533(n-k+1) for k in (1..n)) [A023671(n) for n in (1..100)] # G. C. Greubel, Jul 18 2022
Comments