cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A194849 Write n = C(i,3)+C(j,2)+C(k,1) with i>j>k>=0; let L[n] = [i,j,k]; sequence gives list of triples L[n], n >= 0.

Original entry on oeis.org

2, 1, 0, 3, 1, 0, 3, 2, 0, 3, 2, 1, 4, 1, 0, 4, 2, 0, 4, 2, 1, 4, 3, 0, 4, 3, 1, 4, 3, 2, 5, 1, 0, 5, 2, 0, 5, 2, 1, 5, 3, 0, 5, 3, 1, 5, 3, 2, 5, 4, 0, 5, 4, 1, 5, 4, 2, 5, 4, 3, 6, 1, 0, 6, 2, 0, 6, 2, 1, 6, 3, 0, 6, 3, 1, 6, 3, 2, 6, 4, 0, 6, 4, 1, 6, 4, 2, 6, 4, 3, 6, 5, 0, 6, 5, 1, 6, 5, 2, 6, 5, 3, 6, 5, 4, 7, 1, 0, 7, 2, 0, 7, 2, 1, 7, 3, 0, 7, 3, 1, 7, 3, 2, 7, 4
Offset: 0

Views

Author

N. J. A. Sloane, Sep 03 2011

Keywords

Examples

			List of triples begins:
[2, 1, 0]
[3, 1, 0]
[3, 2, 0]
[3, 2, 1]
[4, 1, 0]
[4, 2, 0]
[4, 2, 1]
[4, 3, 0]
[4, 3, 1]
[4, 3, 2]
...
		

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.3, Eq. (20), p. 360.

Crossrefs

The three columns are [A194847, A194848, A056558], or equivalently [A056556+2, A056557+1, A056558]. See A194847 for further information.

A127325 Hypertetrahedron with T(W,X,Y,Z) = Y - Z.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 4, 3, 2, 1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 4, 3, 2, 1, 0
Offset: 0

Views

Author

Graeme McRae, Jan 10 2007

Keywords

Comments

Together with A127324, A127326 and A127327 might enable reading "by antidiagonals" of hypercube arrays as 4-dimensional analog of A056558, A056560 and A056559 with cubical arrays.

Examples

			a(23)=1 because A127323(23) - A127324(23) = 1.
See A127327 for a table of A127324, A127325, A127326, A127327.
		

Crossrefs

Formula

a(n) = A127323(n) - A127324(n).

A127326 Hypertetrahedron with T(W,X,Y,Z) = X - Y.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 1, 1, 0, 0, 0, 0, 1, 0, 0, 2, 1, 1, 0, 0, 0, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 1, 0, 0, 0, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 1, 0, 0, 0, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Graeme McRae, Jan 10 2007

Keywords

Comments

Together with A127324, A127325 and A127327 might enable reading "by antidiagonals" of hypercube arrays as 4-dimensional analog of A056558, A056560 and A056559 with cubical arrays.

Examples

			a(23)=0 because A127322(23) - A127323(23) = 0.
See A127327 for a table of A127324, A127325, A127326, A127327.
		

Crossrefs

Formula

a(n) = A127322(n) - A127323(n).

A127327 Hypertetrahedron with T(W,X,Y,Z) = W - X.

Original entry on oeis.org

0, 1, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Graeme McRae, Jan 10 2007

Keywords

Comments

Together with A127324, A127325 and A127326 might enable reading "by antidiagonals" of hypercube arrays as 4-dimensional analog of A056558, A056560 and A056559 with cubical arrays.

Examples

			a(23)=1 because A127321(23) - A127322(23) = 1.
Table of A127324, A127325, A127326, A127327:
   n w,x,y,z
   0 0,0,0,0
   1 0,0,0,1
   2 0,0,1,0
   3 0,1,0,0
   4 1,0,0,0
   5 0,0,0,2
   6 0,0,1,1
   7 0,1,0,1
   8 1,0,0,1
   9 0,0,2,0
  10 0,1,1,0
  11 1,0,1,0
  12 0,2,0,0
  13 1,1,0,0
  14 2,0,0,0
  15 0,0,0,3
  16 0,0,1,2
  17 0,1,0,2
  18 1,0,0,2
  19 0,0,2,1
  20 0,1,1,1
  21 1,0,1,1
  22 0,2,0,1
  23 1,1,0,1
		

Crossrefs

Formula

a(n) = A127321(n) - A127322(n).

A123575 The Kruskal-Macaulay function L_3(n).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 5, 5, 5, 6, 6, 7, 9, 9, 10, 12, 15, 15, 15, 16, 16, 17, 19, 19, 20, 22, 25, 25, 26, 28, 31, 35, 35, 35, 36, 36, 37, 39, 39, 40, 42, 45, 45, 46, 48, 51, 55, 55, 56, 58, 61, 65, 70, 70, 70, 71, 71, 72, 74, 74, 75, 77, 80, 80, 81, 83, 86, 90, 90, 91, 93
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2006

Keywords

Comments

Write n (uniquely) as n = C(n_t,t) + C(n_{t-1},t-1) + ... + C(n_v,v) where n_t > n_{t-1} > ... > n_v >= v >= 1. Then L_t(n) = C(n_t,t+1) + C(n_{t-1},t) + ... + C(n_v,v+1).

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4, Fascicle 3, Section 7.2.1.3, Table 3.

Crossrefs

For L_i(n), i=1, 2, 3, 4, 5 see A000217, A111138, A123575, A123576, A123577.
Essentially partial sums of A056558.

Programs

  • Maple
    lowpol := proc(n,t) local x::integer ; x := floor( (n*factorial(t))^(1/t)) ; while binomial(x,t) <= n do x := x+1 ; od ; RETURN(x-1) ; end: C := proc(n,t) local nresid,tresid,m,a ; nresid := n ; tresid := t ; a := [] ; while nresid > 0 do m := lowpol(nresid,tresid) ; a := [op(a),m] ; nresid := nresid - binomial(m,tresid) ; tresid := tresid-1 ; od ; RETURN(a) ; end: L := proc(n,t) local a ; a := C(n,t) ; #add( binomial(op(i,a),t+i),i=1..nops(a)) ; add( binomial(op(i,a),t+2-i),i=1..nops(a)) ; end: A123575 := proc(n) L(n,3) ; end: for n from 0 to 80 do printf("%d, ",A123575(n)) ; od ; # R. J. Mathar, May 18 2007
  • Mathematica
    lowpol[n_, t_] := Module[{x = Floor[(n t!)^(1/t)]}, While[Binomial[x, t] <= n, x++] ; x - 1];
    c[n_, t_] := Module[{n0 = n, t0 = t, m, a = {}}, While[n0 > 0, m = lowpol[n0, t0]; AppendTo[a, m]; n0 -= Binomial[m, t0]; t0--]; a];
    L[n_, t_] := Module[{a = c[n, t]}, Sum[Binomial[a[[i]], t + 2 - i], {i, 1, Length[a]}]];
    a[n_] := L[n, 3];
    a /@ Range[0, 80] (* Jean-François Alcover, Mar 29 2020, after R. J. Mathar *)

Extensions

More terms from R. J. Mathar, May 18 2007

A309362 Positions of 0's in A326764 (interpreted as a flat sequence).

Original entry on oeis.org

0, 11, 15, 17, 37, 45, 54, 59, 70, 79, 124, 129, 135, 161, 171, 192, 195, 202, 213, 252, 272, 299, 306, 307, 358, 372, 410, 422, 477, 486, 498, 506, 530, 571, 586, 644, 655, 736, 749, 760, 794, 828, 845, 890, 905, 939, 985, 994, 1087, 1101, 1113, 1168, 1189
Offset: 0

Views

Author

Rémy Sigrist, Jul 25 2019

Keywords

Crossrefs

Programs

  • PARI
    See Links section.

Formula

A326757(n) = A056558(a(n)).
A326758(n) = A056560(a(n)).
A326759(n) = A056559(a(n)).

A360240 Weakly decreasing triples of positive integers sorted lexicographically and concatenated.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 3, 1, 1, 3, 2, 1, 3, 2, 2, 3, 3, 1, 3, 3, 2, 3, 3, 3, 4, 1, 1, 4, 2, 1, 4, 2, 2, 4, 3, 1, 4, 3, 2, 4, 3, 3, 4, 4, 1, 4, 4, 2, 4, 4, 3, 4, 4, 4, 5, 1, 1, 5, 2, 1, 5, 2, 2, 5, 3, 1, 5, 3, 2, 5, 3, 3, 5, 4, 1, 5, 4, 2, 5, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Feb 11 2023

Keywords

Examples

			Triples begin: (1,1,1), (2,1,1), (2,2,1), (2,2,2), (3,1,1), (3,2,1), (3,2,2), (3,3,1), (3,3,2), (3,3,3), ...
		

Crossrefs

The triples have sums A070770.
Positions of first appearances are A158842.
For pairs instead of triples we have A330709 + 1.
The zero-based version is A331195.
- The first part is A360010 = A056556 + 1.
- The second part is A194848 = A056557 + 1.
- The third part is A333516 = A056558 + 1.

Programs

  • Mathematica
    nn=9;Join@@Select[Tuples[Range[nn],3],GreaterEqual@@#&]
  • Python
    from math import isqrt, comb
    from sympy import integer_nthroot
    def A360240(n): return (m:=integer_nthroot((n-1<<1)+6,3)[0])+(n>3*comb(m+2,3)) if (a:=n%3)==1 else (k:=isqrt(r:=(b:=(n-1)//3)+1-comb((m:=integer_nthroot((n-1<<1)-1,3)[0])-(b(k<<2)*(k+1)+1) if a==2 else 1+(r:=(b:=(n-1)//3)-comb((m:=integer_nthroot((n-1<<1)-3,3)[0])+(b>=comb(m+2,3))+1,3))-comb((k:=isqrt(m:=r+1<<1))+(m>k*(k+1)),2) # Chai Wah Wu, Jun 07 2025

Formula

a(n) = A331195(n-1) + 1.

A332616 a(n) = value of the cubic form A^3 + B^3 + C^3 - 3ABC evaluated at row n of the table in A331195.

Original entry on oeis.org

0, 1, 2, 0, 8, 9, 4, 16, 5, 0, 27, 28, 20, 35, 18, 7, 54, 28, 8, 0, 64, 65, 54, 72, 49, 32, 91, 56, 27, 10, 128, 81, 40, 11, 0, 125, 126, 112, 133, 104, 81, 152, 108, 70, 44, 189, 130, 77, 36, 13, 250, 176, 108, 52, 14, 0, 216, 217, 200, 224, 189, 160, 243
Offset: 0

Views

Author

Mehmet A. Ates, Jun 08 2020

Keywords

Comments

No term in the sequence is congruent to 3 or 6 (mod 9).

Examples

			For n=3, a(n) = f[1,1,0] = 1^3 + 1^3 + 0^3 - 3*1*1*0 = 2.
		

Crossrefs

Cf. A074232 (in ascending order, strictly positive & without duplicates).

Programs

  • Mathematica
    SeqSize = 30;
    ListSize = 120;
    F3List = List[];
    f3[a_, b_, c_] := a^3 + b^3 + c^3 - 3*a*b*c
    For[i = 0, i <= SeqSize, i++, For[j = 0, j <= i, j++, For[k = 0, k <= j, k++, AppendTo[F3List, f3[i, j, k]]]]]
    ListPlot[F3List, PlotLabel -> "a(n)"]
    Print["First ", ListSize, " elements of a(n): ", Take[F3List, ListSize]]

Formula

a(n) = A056556(n)^3 + A056557(n)^3 + A056558(n)^3 - 3*A056556(n)*A056557(n)*A056558(n).

Extensions

Edited by N. J. A. Sloane, Aug 06 2020
Previous Showing 21-28 of 28 results.