cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A057518 The global ranks of each term of A057517, i.e., tells that A057515(A057518(n)) = 2 for all n.

Original entry on oeis.org

2, 5, 6, 12, 13, 15, 16, 19, 31, 32, 34, 35, 36, 40, 41, 43, 44, 47, 52, 53, 56, 60, 87, 88, 90, 91, 92, 96, 97, 99, 100, 101, 103, 104, 105, 106, 115, 116, 118, 119, 120, 124, 125, 127, 128, 131, 136, 137, 140, 144, 152, 153, 155, 156, 159, 164, 165, 168, 172, 178
Offset: 1

Views

Author

Antti Karttunen, Sep 03 2000

Keywords

Crossrefs

Programs

  • Maple
    map(CatalanRankGlobal, A057517); # CatalanRankGlobal given in A057117.

A084108 A014486-indices of "Complete Binary Trees".

Original entry on oeis.org

0, 1, 6, 477, 11231586, 17656351387745509, 118547604486270210927391203275078974, 14557702344245589436016960628730576845591277100880695377777962217288601549
Offset: 0

Views

Author

Antti Karttunen, May 13 2003

Keywords

Comments

Fixed points of permutations A069767 and A069768.

Crossrefs

a(n) = A057117(A083942(n)). Also iterates of A080298, i.e., a(1)=A080298(0), a(2)=A080298(A080298(0)), a(3)=A080298(A080298(A080298(0))), etc. Cf. also A083940, A080274.

Formula

a(n) = A080300(A084107(n)).

A080311 Orbit size of each tree encoded by A014486(n) under Meeussen's bf<->df map on binary trees.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 3, 3, 3, 4, 3, 2, 4, 3, 4, 3, 2, 4, 1, 1, 3, 3, 3, 4, 3, 2, 4, 3, 4, 3, 2, 4, 16, 16, 8, 16, 8, 2, 2, 16, 16, 16, 8, 8, 8, 16, 16, 16, 16, 8, 8, 16, 8, 2, 2, 16, 16, 16, 16, 16, 1, 1, 3, 3, 3, 4, 3, 2, 4, 3, 4, 3, 2, 4, 16, 16, 8, 16, 8, 2, 2, 16, 16, 16, 8, 8, 8, 16
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2003

Keywords

Comments

This is the size of the cycle containing n in the permutations A057117/A057118.

Crossrefs

A215406 A ranking algorithm for the lexicographic ordering of the Catalan families.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4
Offset: 0

Views

Author

Peter Luschny, Aug 09 2012

Keywords

Comments

See Antti Karttunen's code in A057117. Karttunen writes: "Maple procedure CatalanRank is adapted from the algorithm 3.23 of the CAGES (Kreher and Stinson) book."
For all n>0, a(A014486(n)) = n = A080300(A014486(n)). The sequence A080300 differs from this one in that it gives 0 for those n which are not found in A014486. - Antti Karttunen, Aug 10 2012

Crossrefs

Programs

  • Maple
    A215406 := proc(n) local m,a,y,t,x,u,v;
    m := iquo(A070939(n), 2);
    a := A030101(n);
    y := 0; t := 1;
    for x from 0 to 2*m-2 do
        if irem(a, 2) = 1 then y := y + 1
        else u := 2*m - x;
             v := m-1 - iquo(x+y,2);
             t := t + A037012(u,v);
             y := y - 1 fi;
        a := iquo(a, 2) od;
    A014137(m) - t end:
    seq(A215406(i),i=0..199); # Peter Luschny, Aug 10 2012
  • Mathematica
    A215406[n_] := Module[{m, d, a, y, t, x, u, v}, m = Quotient[Length[d = IntegerDigits[n, 2]], 2]; a = FromDigits[Reverse[d], 2]; y = 0; t = 1; For[x = 0, x <= 2*m - 2, x++, If[Mod[a, 2] == 1, y++, u = 2*m - x; v = m - Quotient[x + y, 2] - 1; t = t - Binomial[u - 1, v - 1] + Binomial[u - 1, v]; y--]; a = Quotient[a, 2]]; (1 - I*Sqrt[3])/2 - 4^(m + 1)*Gamma[m + 3/2]*Hypergeometric2F1[1, m + 3/2, m + 3, 4]/(Sqrt[Pi]*Gamma[m + 3]) - t]; Table[A215406[n] // Simplify, {n, 0, 86}] (* Jean-François Alcover, Jul 25 2013, translated and adapted from Peter Luschny's Maple program *)
  • Sage
    def A215406(n) : # CatalanRankGlobal(n)
        m = A070939(n)//2
        a = A030101(n)
        y = 0; t = 1
        for x in (1..2*m-1) :
            u = 2*m - x; v = m - (x+y+1)/2
            mn = binomial(u, v) - binomial(u, v-1)
            t += mn*(1 - a%2)
            y -= (-1)^a
            a = a//2
        return A014137(m) - t

A057120 Global ranks of terms of A057119.

Original entry on oeis.org

1, 2, 12, 970, 21801077, 33006325301864331, 216010416087275256441802643730702446
Offset: 0

Views

Author

Antti Karttunen, Aug 11 2000

Keywords

Comments

CatalanRankGlobal given in A057117.

Formula

map(CatalanRankGlobal, A057119) or a(n) = A057121(n) + Sum_{j=0..((2^n)-1)} A000108[j]

A080273 Orbit size of each tree A080263(n) under Meeussen's bf<->df map on binary trees.

Original entry on oeis.org

1, 3, 16, 1441, 41888, 3376173
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2003

Keywords

Comments

This is the size of the cycle containing A080265(n) in the permutations A057117/A057118.

Crossrefs

Formula

a(n) = A080311(A080265(n)).

A080297 Orbit size of each tree A080293(n) under Meeussen's bf<->df map on binary trees.

Original entry on oeis.org

1, 3, 202, 41888
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2003

Keywords

Comments

This is the size of the cycle containing A080295(n) in the permutations A057117/A057118.

Crossrefs

Formula

a(n) = A080311(A080295(n)).

A057121 Local ranks of terms of A057119.

Original entry on oeis.org

0, 0, 3, 344, 8398380, 13286191841734681, 89262894246121771416347364297566757
Offset: 0

Views

Author

Antti Karttunen, Aug 11 2000

Keywords

Comments

CatalanRank given in A057117.

Crossrefs

Cf. A057120.

Formula

a(n) = CatalanRank(2^n, bt_df2tree_apply_k_times(2, n))
Previous Showing 11-18 of 18 results.