cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-45 of 45 results.

A363334 a(n) is the sum of divisors of n that are both coreful and bi-unitary.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 14, 9, 10, 11, 12, 13, 14, 15, 26, 17, 18, 19, 20, 21, 22, 23, 42, 25, 26, 39, 28, 29, 30, 31, 62, 33, 34, 35, 36, 37, 38, 39, 70, 41, 42, 43, 44, 45, 46, 47, 78, 49, 50, 51, 52, 53, 78, 55, 98, 57, 58, 59, 60, 61, 62, 63, 118, 65, 66, 67
Offset: 1

Views

Author

Amiram Eldar, May 28 2023

Keywords

Comments

First differs from A363331 at n = 16.
The number of these divisors is A363332(n).

Examples

			a(8) = 14 since 8 has 3 divisors that are both bi-unitary and coreful, 2, 4 and 8, and 2 + 4 + 8 = 14.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1) - 1)/(p - 1) - 1 - If[OddQ[e], 0, p^(e/2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2] + 1) - 1)/(f[i, 1] - 1) - 1 - if(f[i, 2]%2, 0, f[i, 1]^(f[i, 2]/2)));}

Formula

Multiplicative with a(p^e) = (p^(e+1) - 1)/(p - 1) - 1, if e is odd, and (p^(e+1) - 1)/(p - 1) - p^(e/2) - 1 if e is even.
a(n) >= n, with equality if and only if n is cubefree (A004709).
a(n) >= A362852(n), with equality if and only if n = 1.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(3)/2) * Product_{p prime} (p/(p+1))*(1+1/p-1/p^3+2/p^5) = 0.557782322450569540209... .
Dirichlet g.f.: zeta(s-1) * zeta(s) * zeta(2*s-1) * Product_{p prime} (1 - 1/p^s - 1/p^(2*s-1) + 1/p^(3*s-2) + 2/p^(3*s-1) - 2/p^(4*s-2)). - Amiram Eldar, Oct 01 2023

A364991 Primitive coreful 3-abundant numbers: coreful 3-abundant numbers (A340109) that are powerful numbers (A001694).

Original entry on oeis.org

5400, 7200, 10800, 14400, 16200, 18000, 21168, 21600, 27000, 28800, 32400, 36000, 42336, 43200, 48600, 54000, 56448, 57600, 63504, 64800, 72000, 81000, 84672, 86400, 88200, 90000, 97200, 98784, 104544, 108000, 112896, 115200, 127008, 129600, 135000, 144000, 145800
Offset: 1

Views

Author

Amiram Eldar, Aug 15 2023

Keywords

Comments

Powerful numbers k such that csigma(k) > 3*k, where csigma(k) = A057723(k) is the sum of the coreful divisors of k.
If m is a term and k is a squarefree number coprime to m, then csigma(k*m) = csigma(k) * csigma(m) = k * csigma(m) > 3*k*m, so k*m is a coreful 3-abundant number. Therefore, the sequence of coreful 3-abundant numbers (A340109) can be generated from this sequence by multiplying with coprime squarefree numbers. The asymptotic density of the coreful 3-abundant numbers can be calculated from this sequence (see comment in A340109).

Crossrefs

Intersection of A001694 and A340109.
Subsequence of A356871.

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1)-1; g[1] = 1; g[n_] := If[AllTrue[(fct = FactorInteger[n])[[;; , 2]], #>1 &], Times @@ f @@@ fct, 0]; seq[kmax_] := Module[{s = {}}, Do[If[g[k] > 3*k, AppendTo[s, k]], {k, 1, kmax}]; s]; seq[500000]
  • PARI
    s(f) = prod(i = 1, #f~, sigma(f[i, 1]^f[i, 2]) - 1);
    lista(kmax) = {my(f); for(k=2, kmax, f=factor(k); if(vecmin(f[,2]) > 1 && s(f) > 3*k, print1(k, ", ")));}

A339980 Coreful Zumkeller numbers (A339979) whose set of coreful divisors can be partitioned into two disjoint sets of equal sum in a single way.

Original entry on oeis.org

36, 72, 180, 200, 252, 360, 392, 396, 468, 504, 600, 612, 684, 784, 792, 828, 936, 1044, 1116, 1176, 1224, 1260, 1332, 1368, 1400, 1476, 1548, 1656, 1692, 1908, 1936, 1960, 1980, 2088, 2124, 2196, 2200, 2232, 2340, 2352, 2412, 2520, 2556, 2600, 2628, 2664, 2704
Offset: 1

Views

Author

Amiram Eldar, Dec 25 2020

Keywords

Comments

A coreful divisor d of a number k is a divisor with the same set of distinct prime factors as k, or rad(d) = rad(k), where rad(k) is the largest squarefree divisor of k (A007947).
The coreful perfect numbers (A307958) are a subsequence.

Examples

			36 is a term since there is only one partition of its set of coreful divisors, {6, 12, 18, 36}, into 2 disjoint sets whose sums are equal: 6 + 12 + 18 = 36.
		

Crossrefs

A307958 is a subsequence.
Subsequence of A308053 and A339979.
Similar sequences: A083209, A335143, A335199, A335202, A335217, A335219.

Programs

  • Mathematica
    corZumQ[n_] := Module[{r = Times @@ FactorInteger[n][[;; , 1]], d, sum, x}, d = r*Divisors[n/r]; (sum = Plus @@ d) >= 2*n && EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] == 2]; Select[Range[10000], corZumQ]

A349180 Coreful harmonic numbers: nonsquarefree numbers k such that the harmonic mean of the coreful divisors of k is an integer.

Original entry on oeis.org

12, 18, 36, 56, 60, 75, 84, 90, 126, 132, 150, 156, 168, 180, 198, 204, 228, 234, 240, 252, 276, 280, 306, 342, 348, 351, 372, 392, 396, 414, 420, 444, 450, 468, 492, 504, 516, 522, 525, 558, 564, 588, 612, 616, 630, 636, 660, 666, 684, 702, 708, 720, 726, 728
Offset: 1

Views

Author

Amiram Eldar, Nov 09 2021

Keywords

Comments

A divisor of a number k is coreful if it is divisible by every prime that divides k.
The sequence is restricted to nonsquarefree numbers since the squarefree numbers have a single coreful divisor and thus they trivially have an integer harmonic mean.

Examples

			12 is a term since its coreful divisors are 6 and 12 and their harmonic mean, 8, is an integer.
		

Crossrefs

Programs

  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[;; , 1]]; corHarmQ[n_] := Module[{r = rad[n], d}, d = Select[Divisors[n], rad[#] == r &]; IntegerQ[HarmonicMean[d]]]; Select[Range[10^3], !SquareFreeQ[#] && corHarmQ[#] &]

A383954 a(n) = Product_{i} (phi(p_i^e_i)-1) where n = Product_{i} p_i^e_i and phi is the Euler phi function.

Original entry on oeis.org

1, 0, 1, 1, 3, 0, 5, 3, 5, 0, 9, 1, 11, 0, 3, 7, 15, 0, 17, 3, 5, 0, 21, 3, 19, 0, 17, 5, 27, 0, 29, 15, 9, 0, 15, 5, 35, 0, 11, 9, 39, 0, 41, 9, 15, 0, 45, 7, 41, 0, 15, 11, 51, 0, 27, 15, 17, 0, 57, 3, 59, 0, 25, 31, 33, 0, 65, 15, 21, 0, 69, 15, 71, 0, 19, 17, 45, 0, 77, 21
Offset: 1

Views

Author

Michel Marcus, Aug 19 2025

Keywords

Comments

This is the phi- function in Sandor and Atanassof.

Crossrefs

Cf. A000010 (phi), A107758 (sigma+), A057723 (sigma-), A055653 (phi+).

Programs

  • Mathematica
    A383954[n_] := If[n == 1, 1, Times @@ (EulerPhi[Power @@@ FactorInteger[n]] - 1)];
    Array[A383954, 100] (* Paolo Xausa, Aug 19 2025 *)
  • PARI
    a(n) = my(f=factor(n)); prod(k=1, #f~, p=f[k,1]; eulerphi(f[k,1]^f[k,2])-1);

Formula

From Amiram Eldar, Aug 19 2025: (Start)
Multiplicative with a(p^e) = (p-1)*p^(e-1) - 1.
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - 3/p^s + 1/p^(2*s-1) + 1/p^(2*s)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 + 1/(p+1) - (p+1)/p^2) = 0.39439177573628632634... . (End)
Previous Showing 41-45 of 45 results.