cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A366616 Number of divisors of 5^n+1.

Original entry on oeis.org

2, 4, 4, 12, 4, 8, 8, 16, 8, 32, 16, 32, 8, 16, 8, 96, 8, 16, 32, 32, 16, 576, 16, 16, 16, 32, 24, 320, 8, 16, 128, 32, 16, 384, 64, 128, 64, 32, 16, 192, 32, 64, 64, 64, 8, 512, 8, 32, 32, 128, 128, 768, 32, 32, 64, 128, 128, 384, 8, 64, 64, 64, 16, 24576, 16
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(3)=12 because 5^3+1 has divisors {1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](5^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0, 5^Range[0, 70] + 1] (* Paolo Xausa, Apr 20 2025 *)
  • PARI
    a(n) = numdiv(5^n+1);

Formula

a(n) = sigma0(5^n+1) = A000005(A034474(n)).

A366617 Sum of the divisors of 5^n+1.

Original entry on oeis.org

3, 12, 42, 312, 942, 6264, 25284, 162000, 620460, 4961280, 16161768, 103442688, 367381884, 2441936064, 9859525284, 76963663296, 228970112844, 1526377433328, 6339280635408, 38199227335200, 144103649734968, 1285221510144000, 3894650946433800, 24349131482713344
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(3)=312 because 5^3+1 has divisors {1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](5^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[1, 5^Range[0, 30] + 1] (* Paolo Xausa, Jul 03 2024 *)

Formula

a(n) = sigma(5^n+1) = A000203(A034474(n)).

A366713 Number of prime factors of 12^n + 1 (counted with multiplicity).

Original entry on oeis.org

1, 1, 2, 3, 2, 2, 3, 3, 3, 5, 4, 2, 4, 5, 4, 7, 2, 3, 5, 4, 6, 9, 6, 4, 6, 6, 5, 10, 3, 3, 6, 3, 2, 9, 4, 5, 7, 4, 5, 11, 4, 5, 6, 5, 4, 12, 3, 5, 5, 5, 10, 9, 5, 5, 10, 7, 9, 11, 8, 6, 10, 5, 6, 15, 5, 9, 11, 4, 5, 12, 10, 3, 10, 5, 8, 17, 5, 6, 9, 4, 6, 15
Offset: 0

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeOmega[12^Range[70]+1]
  • PARI
    a(n)=bigomega(12^n+1)

Formula

a(n) = bigomega(12^n+1) = A001222(A178248(n)).

A366687 Number of prime factors of 11^n + 1 (counted with multiplicity).

Original entry on oeis.org

1, 3, 2, 5, 2, 4, 4, 4, 3, 7, 3, 7, 4, 6, 5, 8, 3, 6, 5, 7, 4, 7, 4, 7, 7, 6, 3, 10, 6, 6, 6, 7, 4, 13, 6, 11, 7, 5, 4, 11, 5, 6, 9, 5, 6, 13, 6, 7, 5, 8, 6, 11, 3, 7, 9, 13, 7, 12, 6, 7, 8, 6, 4, 13, 3, 10, 8, 9, 7, 14, 8, 6, 10, 8, 8, 13, 6, 12, 12, 7, 10
Offset: 0

Views

Author

Sean A. Irvine, Oct 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeOmega[11^Range[70]+1]
  • PARI
    a(n)=bigomega(11^n+1)

Formula

a(n) = bigomega(11^n+1) = A001222(A034524(n)).
Previous Showing 11-14 of 14 results.