cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A058901 Inconsummate numbers in base 5: no number is this multiple of the sum of its digits (in base 5).

Original entry on oeis.org

16, 22, 28, 46, 56, 58, 68, 74, 76, 80, 106, 108, 110, 118, 128, 136, 138, 140, 146, 152, 168, 198, 202, 206, 208, 230, 249, 256, 258, 262, 263, 268, 274, 276, 278, 280, 284, 286, 288, 290, 292, 294, 296, 298, 302, 318, 323, 324, 326, 336, 338
Offset: 1

Views

Author

N. J. A. Sloane, Jan 09 2001

Keywords

Crossrefs

Programs

  • Maple
    For Maple code see A058906.
  • Mathematica
    base=5; Do[k=n; While[Apply[Plus, IntegerDigits[k, base]] n!=k&&k<250n, k+=n]; If[k==250 n, Print[n]], {n, 1, 10^4}] (* Vincenzo Librandi, Nov 03 2016 *)
  • Python
    from itertools import count, islice, combinations_with_replacement
    from sympy.ntheory import digits
    def A058901_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            for l in count(1):
                if 4*l*n < 5**(l-1):
                    yield n
                    break
                for d in combinations_with_replacement(range(5),l):
                    if (s:=sum(d)) > 0 and sorted(digits(s*n,5)[1:]) == list(d):
                        break
                else:
                    continue
                break
    A058901_list = list(islice(A058901_gen(),20)) # Chai Wah Wu, May 10 2023

A058902 Inconsummate numbers in base 6: no number is this multiple of the sum of its digits (in base 6).

Original entry on oeis.org

27, 33, 64, 82, 97, 100, 103, 104, 107, 118, 122, 124, 125, 128, 134, 135, 152, 159, 162, 177, 190, 193, 195, 198, 205, 208, 212, 214, 232, 233, 250, 277, 280, 298, 334, 343, 345, 349, 352, 358, 362, 363, 364, 370, 380, 382, 384, 403, 427, 442
Offset: 1

Views

Author

N. J. A. Sloane, Jan 09 2001

Keywords

Crossrefs

Programs

  • Maple
    For Maple code see A058906.
  • Mathematica
    base=6; Do[k=n; While[Apply[Plus,IntegerDigits[k, base]] n!=k&&k<250 n, k+=n]; If[k==250 n, Print[n]], {n, 1, 10^3}] (* Vincenzo Librandi, Jan 30 2017 *)
  • Python
    from itertools import count, islice, combinations_with_replacement
    from sympy.ntheory import digits
    def A058902_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            for l in count(1):
                if 5*l*n < 6**(l-1):
                    yield n
                    break
                for d in combinations_with_replacement(range(6),l):
                    if (s:=sum(d)) > 0 and sorted(digits(s*n,6)[1:]) == list(d):
                        break
                else:
                    continue
                break
    A058902_list = list(islice(A058902_gen(),20)) # Chai Wah Wu, May 10 2023

A058903 Inconsummate numbers in base 7: no number is this multiple of the sum of its digits (in base 7).

Original entry on oeis.org

30, 86, 102, 134, 138, 141, 158, 162, 167, 170, 183, 186, 194, 210, 213, 233, 284, 290, 306, 312, 314, 326, 330, 338, 354, 362, 366, 368, 428, 452, 480, 530, 534, 536, 540, 542, 554, 564, 578, 591, 602, 645, 648, 656, 705, 708, 714, 740, 746
Offset: 1

Views

Author

N. J. A. Sloane, Jan 09 2001

Keywords

Crossrefs

Programs

  • Maple
    For Maple code see A058906.
  • Mathematica
    base=7; Do[k=n; While[Apply[Plus, IntegerDigits[k, base]] n!=k&&k<250n, k+=n]; If[k==250 n, Print[n]], {n, 1, 10^3}] (* Vincenzo Librandi, Jan 30 2017 *)
  • Python
    from itertools import count, islice, combinations_with_replacement
    from sympy.ntheory import digits
    def A058903_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            for l in count(1):
                if 6*l*n < 7**(l-1):
                    yield n
                    break
                for d in combinations_with_replacement(range(7),l):
                    if (s:=sum(d)) > 0 and sorted(digits(s*n,7)[1:]) == list(d):
                        break
                else:
                    continue
                break
    A058903_list = list(islice(A058903_gen(),20)) # Chai Wah Wu, May 10 2023

A058904 Inconsummate numbers in base 8: no number is this multiple of the sum of its digits (in base 8).

Original entry on oeis.org

42, 44, 51, 52, 60, 105, 109, 116, 124, 173, 177, 178, 181, 201, 205, 209, 210, 213, 214, 217, 233, 237, 241, 242, 245, 249, 250, 251, 254, 255, 269, 273, 277, 278, 282, 285, 287, 290, 298, 299, 300, 308, 336, 343, 348, 352, 397, 401, 402, 403
Offset: 1

Views

Author

N. J. A. Sloane, Jan 09 2001

Keywords

Crossrefs

Programs

  • Maple
    For Maple code see A058906.
  • Mathematica
    base=8; Do[k=n; While[Apply[Plus, IntegerDigits[k, base]] n!=k&&k<250n, k+=n]; If[k==250 n, Print[n]], {n, 1, 10^3}] (* Vincenzo Librandi, Sep 21 2017 *)
  • Python
    from itertools import count, islice, combinations_with_replacement
    def A058904_gen(startvalue=1): # generator of terms
        for n in count(max(startvalue,1)):
            for l in count(1):
                if 7*l*n < 1<<3*(l-1):
                    yield n
                    break
                for d in combinations_with_replacement(range(8),l):
                    if (s:=sum(d)) > 0 and sorted(oct(s*n)[2:]) == list(map(str,d)):
                        break
                else:
                    continue
                break
    A058904_list = list(islice(A058904_gen(),20)) # Chai Wah Wu, May 09 2023

A058905 Inconsummate numbers in base 9: no number is this multiple of the sum of its digits (in base 9).

Original entry on oeis.org

46, 47, 48, 56, 58, 66, 76, 86, 136, 138, 167, 176, 222, 227, 228, 248, 258, 298, 302, 308, 312, 316, 318, 338, 343, 344, 347, 348, 352, 354, 356, 358, 362, 374, 383, 384, 392, 398, 402, 403, 404, 406, 407, 408, 411, 412, 414, 416, 422, 423
Offset: 1

Views

Author

N. J. A. Sloane, Jan 09 2001

Keywords

Crossrefs

Programs

  • Maple
    For Maple code see A058906.
  • Python
    from itertools import count, islice, combinations_with_replacement
    from sympy.ntheory import digits
    def A058905_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            for l in count(1):
                if l*n<<3 < 9**(l-1):
                    yield n
                    break
                for d in combinations_with_replacement(range(9),l):
                    if (s:=sum(d)) > 0 and sorted(digits(s*n,9)[1:]) == list(d):
                        break
                else:
                    continue
                break
    A058905_list = list(islice(A058905_gen(),20)) # Chai Wah Wu, May 10 2023
Previous Showing 11-15 of 15 results.