cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A359697 Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where T(n,k) is carryless product n X k base 10.

Original entry on oeis.org

1, 2, 4, 3, 6, 9, 4, 8, 2, 6, 5, 0, 5, 0, 5, 6, 2, 8, 4, 0, 6, 7, 4, 1, 8, 5, 2, 9, 8, 6, 4, 2, 0, 8, 6, 4, 9, 8, 7, 6, 5, 4, 3, 2, 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 12, 24, 36, 48, 50, 62, 74, 86, 98, 120, 132, 144
Offset: 1

Views

Author

Seiichi Manyama, Mar 08 2023

Keywords

Examples

			Triangle begins:
   1;
   2,  4;
   3,  6,  9;
   4,  8,  2,  6;
   5,  0,  5,  0,  5;
   6,  2,  8,  4,  0,  6;
   7,  4,  1,  8,  5,  2,  9;
   8,  6,  4,  2,  0,  8,  6,  4;
   9,  8,  7,  6,  5,  4,  3,  2,  1;
  10, 20, 30, 40, 50, 60, 70, 80, 90, 100;
  11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121;
  12, 24, 36, 48, 50, 62, 74, 86, 98, 120, 132, 144;
		

Crossrefs

T(n,n) gives A059729.
Cf. A001477 for carryless 1 X n, A004520 for carryless 2 X n base 10, A055120 for carryless 9 X n, A008592 for carryless 10 X n, A059691 for carryless 12 X n.

Programs

  • PARI
    T(n, k) = fromdigits(Vec(Pol(digits(n))*Pol(digits(k)))%10);

A170986 Carryless product n X n in base 5.

Original entry on oeis.org

0, 1, 4, 4, 1, 25, 36, 49, 34, 41, 100, 121, 119, 114, 106, 100, 106, 114, 119, 121, 25, 41, 34, 49, 36, 625, 676, 729, 654, 701, 900, 961, 899, 934, 991, 1225, 1171, 1219, 1139, 1181, 850, 781, 839, 769, 821, 1025, 1091, 1009, 1074, 1111, 2500, 2601, 2579, 2554, 2526
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2010

Keywords

Crossrefs

For bases 2 through 10 see A000695, A169999, A170985-A170990 and A059729.

Programs

  • PARI
    a(n) = fromdigits(Vec(Pol(digits(n, 5))^2)%5, 5); \\ Seiichi Manyama, Mar 09 2023

A170987 Carryless product n X n in base 6.

Original entry on oeis.org

0, 1, 4, 3, 4, 1, 36, 49, 64, 39, 52, 61, 144, 169, 160, 147, 172, 157, 108, 109, 112, 111, 112, 109, 144, 157, 172, 147, 160, 169, 36, 61, 52, 39, 64, 49, 1296, 1369, 1444, 1299, 1372, 1441, 1764, 1849, 1936, 1767, 1852, 1933, 2304, 2185, 2248, 2307, 2188, 2245
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2010

Keywords

Crossrefs

For bases 2 through 10 see A000695, A169999, A170985-A170990 and A059729.

Programs

  • PARI
    a(n) = fromdigits(Vec(Pol(digits(n, 6))^2)%6, 6); \\ Seiichi Manyama, Mar 09 2023

A170988 Carryless product n X n in base 7.

Original entry on oeis.org

0, 1, 4, 2, 2, 4, 1, 49, 64, 81, 93, 58, 74, 85, 196, 225, 207, 233, 212, 242, 218, 98, 141, 137, 128, 121, 116, 106, 98, 106, 116, 121, 128, 137, 141, 196, 218, 242, 212, 233, 207, 225, 49, 85, 74, 58, 93, 81, 64, 2401, 2500, 2601, 2697, 2452, 2552, 2647, 3136, 3249
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2010

Keywords

Crossrefs

For bases 2 through 10 see A000695, A169999, A170985-A170990 and A059729.

Programs

  • PARI
    a(n) = fromdigits(Vec(Pol(digits(n, 7))^2)%7, 7); \\ Seiichi Manyama, Mar 09 2023

A170989 Carryless product n X n in base 8.

Original entry on oeis.org

0, 1, 4, 1, 0, 1, 4, 1, 64, 81, 100, 113, 64, 81, 100, 113, 256, 289, 260, 289, 256, 289, 260, 289, 64, 113, 100, 81, 64, 113, 100, 81, 0, 1, 4, 1, 0, 1, 4, 1, 64, 81, 100, 113, 64, 81, 100, 113, 256, 289, 260, 289, 256, 289, 260, 289, 64, 113, 100, 81, 64, 113, 100, 81, 4096, 4225
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2010

Keywords

Crossrefs

For bases 2 through 10 see A000695, A169999, A170985-A170990 and A059729.

Programs

  • PARI
    a(n) = fromdigits(Vec(Pol(digits(n, 8))^2)%8, 8); \\ Seiichi Manyama, Mar 09 2023

A361390 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) is carryless n^k base 10.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 8, 9, 4, 1, 0, 1, 6, 7, 6, 5, 1, 0, 1, 2, 1, 4, 5, 6, 1, 0, 1, 4, 3, 6, 5, 6, 7, 1, 0, 1, 8, 9, 4, 5, 6, 9, 8, 1, 0, 1, 6, 7, 6, 5, 6, 3, 4, 9, 1, 0, 1, 2, 1, 4, 5, 6, 1, 2, 1, 10, 1, 0, 1, 4, 3, 6, 5, 6, 7, 6, 9, 100, 11, 1, 0, 1, 8, 9, 4, 5, 6, 9, 8, 1, 1000, 121, 12, 1
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2023

Keywords

Examples

			4 * 4 = 16, so T(4,2) = 6. 6 * 4 = 24, so T(4,3) = 4.
Square array begins:
  1, 0, 0, 0, 0, 0, 0, 0, ...
  1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 2, 4, 8, 6, 2, 4, 8, ...
  1, 3, 9, 7, 1, 3, 9, 7, ...
  1, 4, 6, 4, 6, 4, 6, 4, ...
  1, 5, 5, 5, 5, 5, 5, 5, ...
  1, 6, 6, 6, 6, 6, 6, 6, ...
  1, 7, 9, 3, 1, 7, 9, 3, ...
		

Crossrefs

Columns k=0..4 give A000012, A001477, A059729, A169885, A169886.
Rows n=0..4 give A000007, A000012, A000689, A001148, A168428.
T(11,k) gives A059734.
Main diagonal gives A361351.

Programs

  • PARI
    T(n, k) = fromdigits(Vec(Pol(digits(n))^k)%10);
Previous Showing 21-26 of 26 results.