A378474
The number of n-colorings of the vertices of the truncated cuboctahedron up to rotation and reflection.
Original entry on oeis.org
0, 1, 5864068667776, 1661800897546646288751, 1650586719047285117763813376, 74014868308343792955106160546875, 467755368903219944377426648894114176, 764653504526960946768130306131125170501, 464598858302721315450530067459906444722176
Offset: 0
Cf.
A000332,
A060530,
A128766,
A199406,
A252704,
A252705,
A274900,
A337963,
A378473,
A378475,
A378476,
A378477,
A378478.
A378475
The number of n-colorings of the vertices of the snub cube up to rotation.
Original entry on oeis.org
0, 1, 700688, 11768099013, 11728130343936, 2483526957328125, 197432556580265616, 7982551312716034313, 196765270145344012288, 3323601794975613468921, 41666666667041700250000, 410405528159827444816781, 3312368633477962187301888, 22616698765607508420521013
Offset: 0
Cf.
A000332,
A060530,
A128766,
A199406,
A252704,
A252705,
A274900,
A337963,
A378473,
A378474,
A378476,
A378477,
A378478.
A378476
The number of n-colorings of the vertices of the truncated dodecahedron up to rotation and reflection.
Original entry on oeis.org
0, 1, 9607679885269312, 353259652293727442874919719, 11076899964874301400431118585745408, 7228014483236696229750911410649667971875, 407280649839077145745380578110103790290896704, 4233515506163528044351709372473136729199352546645
Offset: 0
Cf.
A000332,
A060530,
A128766,
A199406,
A252704,
A252705,
A274900,
A337963,
A378473,
A378474,
A378475,
A378477,
A378478.
A378477
The number of n-colorings of the vertices of the truncated icosidodecahedron up to rotation and reflection.
Original entry on oeis.org
0, 1, 11076899964874299238703297447907328, 14975085832620260086776498590197757887552760437584786915, 14723725539819869413194145839524321308612931385268246121155792029614080, 6269303204385533375833261531851976948366440371233447120478861810030555725146484375
Offset: 0
Cf.
A000332,
A060530,
A128766,
A199406,
A252704,
A252705,
A274900,
A337963,
A378473,
A378474,
A378475,
A378476,
A378478.
A378478
The number of n-colorings of the vertices of the snub dodecahedron up to rotation.
Original entry on oeis.org
0, 1, 19215358678900736, 706519304586988199183738259, 22153799929748598169960860333637632, 14456028966473392453665534687042333984375, 814561299678154291488767806377392301451223040, 8467031012327056088703142262372040966699399765293
Offset: 0
Cf.
A000332,
A060530,
A128766,
A199406,
A252704,
A252705,
A274900,
A337963,
A378473,
A378474,
A378475,
A378476,
A378477.
A333418
Irregular triangle: T(n,k) gives the number of ways to 2-color k edges of the n-cube up to rotation and reflection, with 0 <= k <= A001787(n).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 1, 4, 9, 18, 24, 30, 24, 18, 9, 4, 1, 1, 1, 1, 6, 24, 140, 604, 2596, 9143
Offset: 1
Table begins:
n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 ...
---+-------------------------------------------------------
1| 1, 1;
2| 1, 1, 2, 1, 1;
3| 1, 1, 4, 9, 18, 24, 30, 24, 18, 9, 4, 1, 1;
4| 1, 1, 6, 24, 140, 604, 2596, 9143, ...
5| 1, 1, 8, 50, 608, ...
6| 1, 1, 10, 89, ...
A306194
Non-isomorphic colorings of the edges of a cube using at most n colors under rotational symmetries and permutations of the colors.
Original entry on oeis.org
1, 114, 3891, 29854, 87981, 143797, 170335, 177160, 178153, 178243, 178248, 178249, 178249, 178249, 178249, 178249, 178249, 178249, 178249, 178249, 178249, 178249, 178249, 178249, 178249, 178249, 178249, 178249, 178249, 178249, 178249
Offset: 1
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973.
Comments