cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A262897 Nonbranching nodes in the infinite trunk (A259934) of the tree generated by edge-relation A049820(child) = parent: a(n) = A259934(A262892(n)).

Original entry on oeis.org

2, 12, 18, 30, 42, 54, 90, 94, 106, 121, 190, 194, 210, 236, 242, 254, 298, 302, 342, 346, 354, 366, 374, 390, 410, 426, 442, 466, 494, 530, 546, 558, 562, 566, 574, 606, 650, 658, 710, 716, 730, 746, 914, 942, 986, 1030, 1038, 1042, 1052, 1058, 1090, 1114, 1134, 1146, 1240, 1250, 1266, 1278, 1286, 1310, 1354, 1370, 1378, 1418, 1426, 1450, 1454, 1490, 1562, 1650, 1662, 1670, 1676, 1694, 1706
Offset: 1

Views

Author

Antti Karttunen, Oct 06 2015

Keywords

Comments

Equally, numbers n for which A060990(n)*A262693(n) = 1, thus an intersection of A262511 and A259934.
The next odd term after a(10) = 121 occurs at a(3372) = 113569.

Crossrefs

Formula

a(n) = A259934(A262892(n)).

A262903 Numbers that are not leaves but all of whose children are leaves in the tree generated by edge-relation A049820(child) = parent.

Original entry on oeis.org

4, 5, 14, 16, 32, 41, 44, 77, 80, 92, 101, 110, 119, 128, 139, 148, 158, 161, 169, 176, 191, 192, 199, 215, 224, 227, 234, 238, 249, 262, 264, 277, 296, 311, 317, 327, 350, 351, 352, 360, 363, 382, 385, 389, 392, 395, 396, 411, 427, 430, 437, 448, 449, 461, 464, 483, 488, 518, 523, 531, 532, 542, 552, 561, 568, 570, 577, 579, 600, 601, 613, 619, 632, 634, 636, 645, 648, 659, 665, 666, 671, 682, 683, 696, 705, 723
Offset: 1

Views

Author

Antti Karttunen, Oct 06 2015

Keywords

Comments

Numbers n for which A060990(n) > 0 and A060990(n) = A262900(n).
Numbers n for which A262695(n) = 2.

Crossrefs

Subsequence of A262901 and A236562.
No common terms with A259934.
Cf. also A257512.

A263091 Primes p for which A049820(x) = p has no solution.

Original entry on oeis.org

7, 13, 19, 37, 43, 67, 79, 103, 109, 113, 131, 163, 167, 193, 229, 241, 251, 257, 271, 293, 307, 313, 353, 359, 379, 383, 397, 401, 439, 463, 479, 487, 491, 499, 503, 509, 563, 571, 647, 653, 661, 673, 701, 739, 743, 757, 761, 773, 823, 859, 863, 883, 887, 911, 937, 941, 953, 967, 971, 977, 983, 1009, 1093, 1103, 1109, 1171, 1181, 1193, 1217, 1279, 1283, 1291, 1297, 1307, 1321, 1361
Offset: 1

Views

Author

Antti Karttunen, Oct 11 2015

Keywords

Comments

Primes p that there is no such k for which k - d(k) = p, where d(k) is the number of divisors of k (A000005).

Crossrefs

Complement among primes: A263090.
Intersection of A000040 and A045765.
Subsequence of A067774 (A049591).

Programs

  • Mathematica
    lim = 10000; s = Select[Complement[Range@ lim, Sort@ DeleteDuplicates@ Table[n - DivisorSigma[0, n], {n, lim}]], PrimeQ]; Take[s, 76] (* Michael De Vlieger, Oct 13 2015 *)
  • PARI
    allocatemem(123456789);
    uplim1 = 2162160 + 320; \\ = A002182(41) + A002183(41).
    v060990 = vector(uplim1);
    for(n=3, uplim1, v060990[n-numdiv(n)]++);
    A060990 = n -> if(!n,2,v060990[n]);
    n=0; forprime(p=2, 524287, if((0 == A060990(p)), n++; write("b263091.txt", n, " ", p)));
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A263091 (MATCHING-POS 1 1 (lambda (n) (and (= 1 (A010051 n)) (zero? (A060990 n))))))

A263093 Numbers whose squares are in A045765.

Original entry on oeis.org

5, 6, 7, 8, 10, 14, 16, 18, 20, 22, 26, 27, 28, 34, 35, 37, 46, 47, 50, 54, 56, 58, 59, 60, 62, 67, 73, 78, 82, 85, 89, 90, 94, 95, 98, 100, 103, 104, 106, 110, 114, 116, 118, 122, 124, 125, 126, 127, 128, 130, 135, 140, 141, 142, 148, 150, 155, 158, 161, 164, 170, 172, 174, 177, 178, 182, 184, 188, 190, 199, 202, 205, 207
Offset: 1

Views

Author

Antti Karttunen, Oct 11 2015

Keywords

Comments

Numbers n such that there is no such k for which k - d(k) = n^2, where d(k) is the number of divisors of k (A000005).
Numbers n for which A060990(n^2) = A263087(n) = 0.

Crossrefs

Complement: A263092.
Positions of zeros in A263087 and positions of ones in A263088.
Cf. A263095 (the squares of these numbers).

Programs

  • PARI
    \\ Compute A263093 and A263095 at the same time:
    A060990(n) = { my(k = n + 1440, s=0); while(k > n, if(((k-numdiv(k)) == n),s++); k--;); s}; \\ Hard limit 1440 is good for at least up to A002182(67) = 1102701600 as A002183(67) = 1440.
    n = 1; k = 0; while((n^2)<1102701600, if((0 == A060990(n*n)), k++; write("b263093.txt", k, " ", n); write("b263095.txt", k, " ", (n*n)); ); n++; if(!(n%8192),print1(n,",k=", k, ", ")); );
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A263093 (MATCHING-POS 1 1 (lambda (n) (zero? (A060990 (* n n))))))
    (define A263093 (ZERO-POS 1 0 A263087))

Formula

a(n) = A000196(A263095(n)).

A263250 Even bisection of A263087; number of solutions to x - d(x) = 4(n^2), where d(x) is the number of divisors of x (A000005).

Original entry on oeis.org

2, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 1, 1, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 3, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 1, 2, 1, 1, 0, 2, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1
Offset: 0

Views

Author

Antti Karttunen, Nov 07 2015

Keywords

Crossrefs

Cf. also A263252 (partial sums).

Programs

  • PARI
    A060990(n) = { my(k = n + 2400, s=0); while(k > n, if(((k-numdiv(k)) == n),s++); k--;); s}; \\ Hard limit A002183(77)=2400 good for at least up to A002182(77) = 10475665200.
    A263087(n) = A060990(n^2);
    A263250(n) = A263087(2*n);
    p = 0; for(n=0, 10000, k = A263250(n); p += k; write("b263250.txt", n, " ", k); write("b263252.txt", n, " ", p)); \\ Compute A263250 and A263252 at the same time.
    
  • Scheme
    (define (A263250 n) (A263087 (+ n n)))

Formula

a(n) = A263087(2*n).

A263092 Numbers whose squares are in A236562; numbers n such that there is at least one such k for which k - d(k) = n^2, where d(k) is the number of divisors of k (A000005).

Original entry on oeis.org

0, 1, 2, 3, 4, 9, 11, 12, 13, 15, 17, 19, 21, 23, 24, 25, 29, 30, 31, 32, 33, 36, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 51, 52, 53, 55, 57, 61, 63, 64, 65, 66, 68, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 91, 92, 93, 96, 97, 99, 101, 102, 105, 107, 108, 109
Offset: 0

Views

Author

Antti Karttunen, Oct 11 2015

Keywords

Comments

Starting offset is zero, because a(0)=0 is a special case in this sequence.
Numbers n for which A060990(n^2) = A263087(n) > 0.
Numbers n for which A049820(x) = n^2 has a solution.

Crossrefs

Complement: A263093.
Cf. A263094 (the squares of these numbers).
Cf. A262515 (a subsequence).

Programs

  • PARI
    \\ Compute A263092 and A263094 at the same time:
    A060990(n) = { my(k = n + 1440, s=0); while(k > n, if(((k-numdiv(k)) == n),s++); k--;); s}; \\ Hard limit 1440 good for at least up to A002182(67) = 1102701600 as A002183(67) = 1440.
    n = 0; k = 0; while((n^2)<1102701600, if((A060990(n*n) > 0), write("b263092.txt", k, " ", n); write("b263094.txt", k, " ", (n*n)); k++; ); n++; if(!(n%8192),print1(n,",k=", k, ", ")); );
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A263092 (MATCHING-POS 0 0 (lambda (n) (not (zero? (A060990 (* n n)))))))
    (define A263092 (NONZERO-POS 0 0 A263087))

A263095 Squares in A045765; numbers n^2 such that there is no such k for which k - d(k) = n^2, where d(k) is the number of divisors of k (A000005).

Original entry on oeis.org

25, 36, 49, 64, 100, 196, 256, 324, 400, 484, 676, 729, 784, 1156, 1225, 1369, 2116, 2209, 2500, 2916, 3136, 3364, 3481, 3600, 3844, 4489, 5329, 6084, 6724, 7225, 7921, 8100, 8836, 9025, 9604, 10000, 10609, 10816, 11236, 12100, 12996, 13456, 13924, 14884, 15376, 15625, 15876, 16129, 16384, 16900, 18225, 19600, 19881, 20164, 21904, 22500, 24025, 24964, 25921, 26896
Offset: 1

Views

Author

Antti Karttunen, Oct 10 2015

Keywords

Comments

Some of the terms are shared with A262687, but none with A262514.

Crossrefs

Cf. A263093 (gives the square roots).
Intersection of A000290 and A045765.
Cf. also A263091.

Programs

  • Mathematica
    lim = 40000; Take[Select[Complement[Range@ lim, Sort@ DeleteDuplicates@ Table[n - DivisorSigma[0, n], {n, lim}]], IntegerQ@ Sqrt@ # &], 60] (* Michael De Vlieger, Oct 13 2015 *)
  • PARI
    \\ See code in A263093.
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A263095 (MATCHING-POS 1 1 (lambda (n) (and (= 1 (A010052 n)) (zero? (A060990 n))))))

A263251 Odd bisection of A263087; number of solutions to x - d(x) = (2n+1)^2, where d(x) is the number of divisors of x (A000005).

Original entry on oeis.org

2, 1, 0, 0, 2, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 2, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 0, 1, 1, 1, 1, 1, 0, 1, 0, 2, 1, 0, 1, 1, 1, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 0, 0, 1, 2, 2, 0, 2, 1, 0, 1, 1, 1, 2, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 3, 2, 1, 0, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 2, 0, 0, 0, 0, 1, 2, 2, 2, 2, 0, 0, 1, 0, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Nov 07 2015

Keywords

Crossrefs

Cf. also A263253 (partial sums).

Programs

  • PARI
    A060990(n) = { my(k = n + 2400, s=0); while(k > n, if(((k-numdiv(k)) == n),s++); k--;); s}; \\ Hard limit A002183(77)=2400 good for at least up to A002182(77) = 10475665200.
    A263087(n) = A060990(n^2);
    A263251(n) = A263087((2*n)+1);
    p = 0; for(n=0, 10000, k = A263251(n); p += k; write("b263251.txt", n, " ", k); write("b263253.txt", n, " ", p)); \\ Compute A263251 and A263253 at the same time.
    
  • Scheme
    (define (A263251 n) (A263087 (+ n n 1)))

Formula

a(n) = A263087(2*n + 1).

A264970 If A262686(n) = 0, a(n) = 0, otherwise a(n) = 1 + a(A262686(n)), where A262686(n) = largest number k such that k - d(k) = n, or 0 if no such number exists, and d(n) = the number of divisors of n (A000005).

Original entry on oeis.org

12, 2, 11, 2, 1, 1, 10, 0, 0, 3, 2, 2, 9, 0, 1, 5, 1, 4, 8, 0, 0, 3, 7, 2, 0, 0, 2, 1, 0, 1, 6, 6, 1, 0, 5, 5, 0, 0, 6, 4, 0, 1, 4, 0, 1, 3, 3, 2, 5, 0, 0, 1, 0, 2, 2, 0, 0, 1, 1, 4, 4, 3, 3, 0, 0, 2, 0, 0, 0, 1, 2, 3, 3, 2, 0, 0, 2, 1, 4, 0, 1, 1, 3, 3, 2, 0, 2, 2, 0, 4, 3, 1, 1, 3, 2, 5, 1, 4, 0, 2, 0
Offset: 0

Views

Author

Antti Karttunen, Nov 29 2015

Keywords

Comments

a(n) = number of iterations of A262686 needed before zero is reached. In the context of tree (A263267) defined by edge-relation A049820(child) = parent, this is the number of hops we make before reaching one of the leaves (A045765), when we start from n and always select the largest child at each iteration.

Crossrefs

Cf. A045765 (positions of zeros).
One less than A264971.

Formula

If A060990(n) = 0, a(n) = 0, otherwise a(n) = 1 + a(A262686(n)).
Other identities. For all n >= 0:
a(n) = A264971(n) - 1.

A264971 If A262686(n) = 0, a(n) = 1, otherwise a(n) = 1 + a(A262686(n)), where A262686(n) = largest number k such that k - d(k) = n, or 0 if no such number exists, and d(n) = the number of divisors of n (A000005).

Original entry on oeis.org

13, 3, 12, 3, 2, 2, 11, 1, 1, 4, 3, 3, 10, 1, 2, 6, 2, 5, 9, 1, 1, 4, 8, 3, 1, 1, 3, 2, 1, 2, 7, 7, 2, 1, 6, 6, 1, 1, 7, 5, 1, 2, 5, 1, 2, 4, 4, 3, 6, 1, 1, 2, 1, 3, 3, 1, 1, 2, 2, 5, 5, 4, 4, 1, 1, 3, 1, 1, 1, 2, 3, 4, 4, 3, 1, 1, 3, 2, 5, 1, 2, 2, 4, 4, 3, 1, 3, 3, 1, 5, 4, 2, 2, 4, 3, 6, 2, 5, 1, 3, 1
Offset: 0

Views

Author

Antti Karttunen, Nov 29 2015

Keywords

Comments

See comments at A264970.

Crossrefs

One more than A264970.
Number of significant terms on row n of A263271.

Formula

If A060990(n) = 0, a(n) = 1, otherwise a(n) = 1 + a(A262686(n)).
Other identities. For all n >= 0:
a(n) = 1 + A264970(n).
Previous Showing 21-30 of 38 results. Next