cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 142 results. Next

A029457 Numbers k that divide the (right) concatenation of all numbers <= k written in base 12 (most significant digit on left).

Original entry on oeis.org

1, 2, 3, 4, 6, 11, 12, 15, 16, 18, 22, 24, 29, 33, 36, 44, 45, 48, 55, 66, 72, 87, 88, 99, 121, 132, 144, 154, 168, 176, 192, 198, 216, 224, 242, 252, 258, 264, 288, 297, 308, 336, 352, 363, 369, 378, 396, 432, 448, 462, 484, 504, 528, 561, 576, 594, 616, 672
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    b = 12; c = {}; Select[Range[10^5], Divisible[FromDigits[c = Join[c, IntegerDigits[#, b]], b], #] &] (* Robert Price, Mar 11 2020 *)

A029458 Numbers k that divide the (right) concatenation of all numbers <= k written in base 13 (most significant digit on left).

Original entry on oeis.org

1, 3, 9, 13, 15, 16, 39, 48, 65, 169, 208, 240, 377, 400, 507, 603, 624, 720, 1040, 1168, 1200, 1287, 1521, 1833, 1872, 2197, 2592, 2784, 3393, 3744, 4563, 5211, 5408, 6591, 7989, 8299, 11232, 13689, 16224, 16992, 18477, 19643, 19773, 24352, 28561, 37349
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    b = 13; c = {}; Select[Range[10^5], Divisible[FromDigits[c = Join[c, IntegerDigits[#, b]], b], #] &] (* Robert Price, Mar 11 2020 *)

Extensions

More terms from David W. Wilson

A029459 Numbers k that divide the (right) concatenation of all numbers <= k written in base 14 (most significant digit on left).

Original entry on oeis.org

1, 2, 6, 7, 10, 13, 14, 18, 19, 21, 26, 28, 36, 39, 42, 49, 52, 63, 69, 78, 84, 91, 98, 102, 117, 126, 147, 156, 169, 182, 196, 273, 308, 338, 343, 363, 364, 392, 507, 637, 676, 686, 728, 952, 968, 1029, 1078, 1183, 1274, 1352, 1372, 1573, 1768, 1898, 1911
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    b = 14; c = {}; Select[Range[10^5], Divisible[FromDigits[c = Join[c, IntegerDigits[#, b]], b], #] &] (* Robert Price, Mar 11 2020 *)

A029461 Numbers k that divide the (right) concatenation of all numbers <= k written in base 16 (most significant digit on left).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 20, 24, 25, 30, 32, 40, 48, 50, 60, 64, 75, 80, 83, 96, 100, 120, 122, 124, 128, 150, 160, 192, 200, 240, 256, 270, 285, 288, 300, 320, 342, 360, 384, 397, 400, 432, 450, 456, 474, 480, 512, 513, 540, 552, 570, 576, 600
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    b = 16; c = {}; Select[Range[10^5], Divisible[FromDigits[c = Join[c, IntegerDigits[#, b]], b], #] &] (* Robert Price, Mar 11 2020 *)

A029463 Numbers k that divide the (right) concatenation of all numbers <= k written in base 18 (most significant digit on left).

Original entry on oeis.org

1, 2, 3, 6, 9, 17, 18, 27, 34, 36, 44, 51, 54, 68, 81, 99, 102, 108, 153, 162, 204, 289, 306, 324, 340, 360, 408, 442, 459, 486, 536, 540, 578, 612, 648, 680, 702, 729, 867, 908, 918, 972, 1020, 1080, 1156, 1224, 1326, 1377, 1458, 1620, 1683, 1734, 1836
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    b = 18; c = {}; Select[Range[10^5], Divisible[FromDigits[c = Join[c, IntegerDigits[#, b]], b], #] &] (* Robert Price, Mar 11 2020 *)

A029464 Numbers k that divide the (right) concatenation of all numbers <= k written in base 19 (most significant digit on left).

Original entry on oeis.org

1, 3, 9, 19, 27, 36, 47, 51, 57, 76, 83, 108, 156, 171, 228, 279, 323, 361, 405, 475, 492, 513, 675, 684, 855, 1083, 1349, 1412, 1425, 1444, 1539, 1805, 2025, 2052, 2565, 2812, 3249, 4275, 4332, 4775, 5415, 6156, 6859, 8664, 9747, 9848, 10469, 12312
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    b = 19; c = {}; Select[Range[10^5], Divisible[FromDigits[c = Join[c, IntegerDigits[#, b]], b], #] &] (* Robert Price, Mar 11 2020 *)

Extensions

More terms from David W. Wilson

A029465 Numbers k that divide the (right) concatenation of all numbers <= k written in base 20 (most significant digit on left).

Original entry on oeis.org

1, 2, 4, 5, 6, 10, 12, 14, 18, 19, 20, 24, 25, 30, 36, 38, 40, 45, 48, 50, 57, 58, 60, 71, 72, 74, 75, 76, 80, 85, 90, 95, 100, 114, 120, 144, 150, 152, 171, 180, 190, 200, 225, 228, 240, 261, 285, 300, 304, 318, 342, 360, 361, 380, 400, 410, 475, 500, 608, 703
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    b = 20; c = {}; Select[Range[10^5], Divisible[FromDigits[
    c = Join[c, IntegerDigits[#, b]], b], #] &] (* Robert Price, Mar 11 2020 *)

A029467 Numbers k that divide the (right) concatenation of all numbers <= k written in base 22 (most significant digit on left).

Original entry on oeis.org

1, 2, 3, 6, 7, 9, 11, 14, 18, 21, 22, 28, 30, 33, 42, 44, 49, 60, 66, 70, 77, 84, 98, 110, 119, 121, 132, 140, 147, 154, 196, 201, 210, 220, 222, 231, 242, 294, 308, 330, 356, 363, 386, 420, 462, 484, 504, 511, 522, 539, 561, 588, 605, 616, 627, 693, 726, 792
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    b = 22; c = {}; Select[Range[10^5], Divisible[FromDigits[c = Join[c, IntegerDigits[#, b]], b], #] &] (* Robert Price, Mar 11 2020 *)

A029469 Numbers k that divide the (right) concatenation of all numbers <= k written in base 24 (most significant digit on left).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 20, 23, 24, 32, 36, 46, 48, 62, 64, 69, 72, 86, 92, 96, 107, 138, 144, 174, 184, 192, 207, 246, 276, 288, 304, 368, 414, 529, 552, 576, 621, 736, 739, 759, 768, 828, 864, 947, 1044, 1058, 1104, 1136, 1152, 1224, 1242, 1472, 1536
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    b = 24; c = {}; Select[Range[10^5], Divisible[FromDigits[c = Join[c, IntegerDigits[#, b]], b], #] &] (* Robert Price, Mar 11 2020 *)

A029476 Numbers k that divide the (left) concatenation of all numbers <= k written in base 7 (most significant digit on left).

Original entry on oeis.org

1, 3, 15, 16, 29, 48, 75, 144, 477, 6211, 16053, 32688, 40431, 66313, 129825, 134224, 278064, 366064, 386863, 3157824, 4446069, 6697664, 8354233, 28775616, 33559488, 34107072, 38339136, 50059629, 50280080, 71693520, 113603184, 220308720, 247082832, 2637755936
Offset: 1

Views

Author

Keywords

Comments

a(40) > 3*10^10. - Jason Yuen, May 14 2024

Examples

			15 is a term: 212016151413121110654321_7 = 59785983230307066720 = 15 * 3985732215353804448.
		

Crossrefs

Programs

  • Mathematica
    b = 7; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[IntegerDigits[#, b], c], b], #] &] (* Robert Price, Mar 12 2020 *)

Extensions

More terms from 6211 from Andrew Gacek (andrew(AT)dgi.net), Feb 20 2000
More terms from Larry Reeves (larryr(AT)acm.org), Sep 29 2001
Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
a(20)-a(30) from Max Alekseyev, May 13 2011
Previous Showing 31-40 of 142 results. Next