cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 142 results. Next

A029523 Numbers k such that k divides the (left) concatenation of all numbers <= k written in base 6 (most significant digit on right and removing all least significant zeros before concatenation).

Original entry on oeis.org

1, 5, 19, 35, 55, 85, 505, 12047, 113935, 1107173
Offset: 1

Views

Author

Keywords

Comments

This sequence differs from A061959 in that all least significant zeros are removed before concatenation.
No more terms < 10^7. [Lars Blomberg, Sep 05 2011]

Examples

			See A029519 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 6; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[IntegerDigits[IntegerReverse[#, b], b], c], b], #] &] (* Robert Price, Mar 13 2020 *)

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
Additional comments from Larry Reeves (larryr(AT)acm.org), May 25 2001
a(8)-a(9) from Larry Reeves (larryr(AT)acm.org), Jun 11 2001
a(10) from Lars Blomberg, Sep 05 2011

A029524 Numbers k such that k divides the (left) concatenation of all numbers <= k written in base 7 (most significant digit on right and removing all least significant zeros before concatenation).

Original entry on oeis.org

1, 3, 9, 12, 36, 96, 128, 2267, 4031, 29416, 551444, 2033727, 2056797, 2477144, 7974180, 9482385
Offset: 1

Views

Author

Keywords

Comments

This sequence differs from A061960 in that all least significant zeros are removed before concatenation.
No more terms < 10^7. [Lars Blomberg, Sep 07 2011]

Examples

			See A029519 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 7; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[IntegerDigits[IntegerReverse[#, b], b], c], b], #] &] (* Robert Price, Mar 13 2020 *)

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002; Aug 25 2002
a(12)-a(16) from Lars Blomberg, Sep 07 2011

A029525 Numbers k such that k divides the (left) concatenation of all numbers <= k written in base 8 (most significant digit on right and removing all least significant zeros before concatenation).

Original entry on oeis.org

1, 7, 51, 63, 119, 3717, 91153, 147037, 208747, 2707075, 3097013
Offset: 1

Views

Author

Keywords

Comments

This sequence differs from A061961 in that all least significant zeros are removed before concatenation.
No more terms < 10^7. - Lars Blomberg, Sep 07 2011

Examples

			See A029519 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 8; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[IntegerDigits[IntegerReverse[#, b], b], c], b], #] &] (* Robert Price, Mar 13 2020 *)
  • PARI
    lista(nn, m=8) = my(c, s, t); for(k=1, nn, t+=m^c*s=fromdigits(Vecrev(digits(k, m)), m); c+=logint(s, m)+1; if(t%k==0, print1(k, ", "))); \\ Jinyuan Wang, Dec 05 2020

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
Additional comments and more terms from Larry Reeves (larryr(AT)acm.org), Jun 04 2001
a(10)-a(11) from Lars Blomberg, Sep 07 2011

A029526 Numbers k such that k divides the (left) concatenation of all numbers <= k written in base 9 (most significant digit on right and removing all least significant zeros before concatenation).

Original entry on oeis.org

1, 13, 16, 224, 320, 355, 800, 7856, 8720, 11683, 18829, 36464, 42544, 159125
Offset: 1

Views

Author

Keywords

Comments

This sequence differs from A061962 in that all least significant zeros are removed before concatenation.
No more terms < 10^7. - Lars Blomberg, Sep 09 2011

Examples

			See A029519 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 9; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[IntegerDigits[IntegerReverse[#, b], b], c], b], #] &] (* Robert Price, Mar 13 2020 *)
  • PARI
    lista(nn, m=9) = my(c, s, t); for(k=1, nn, t+=m^c*s=fromdigits(Vecrev(digits(k, m)), m); c+=logint(s, m)+1; if(t%k==0, print1(k, ", "))); \\ Jinyuan Wang, Dec 05 2020

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
Additional comments and more terms from Larry Reeves (larryr(AT)acm.org), May 25 2001

A029527 Numbers k such that k divides the (left) concatenation of all numbers <= k written in base 10 (most significant digit on right and removing all least significant zeros before concatenation).

Original entry on oeis.org

1, 3, 9, 27, 99, 471, 60237, 1028301, 1085427, 2851947
Offset: 1

Views

Author

Keywords

Comments

This sequence differs from A061963 in that all least significant zeros are removed before concatenation.
No more terms < 10^7. - Lars Blomberg, Sep 12 2011

Examples

			See A029519 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 10; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[IntegerDigits[IntegerReverse[#, b], b], c], b], #] &] (* Robert Price, Mar 13 2020 *)
  • PARI
    lista(nn, m=10) = my(c, s, t); for(k=1, nn, t+=m^c*s=fromdigits(Vecrev(digits(k, m)), m); c+=logint(s, m)+1; if(t%k==0, print1(k, ", "))); \\ Jinyuan Wang, Dec 05 2020

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
Additional comments from Larry Reeves (larryr(AT)acm.org), May 25 2001. a(7) from Larry Reeves (larryr(AT)acm.org) Jan 14 2002
a(8)-a(10) from Lars Blomberg, Sep 11 2011

A029528 Numbers k such that k divides the (left) concatenation of all numbers <= k written in base 11 (most significant digit on right and removing all least significant zeros before concatenation).

Original entry on oeis.org

1, 5, 20, 32, 815, 1325, 5600, 7889, 34385, 138724, 897165, 1409360, 2039049, 2182992, 9174075
Offset: 1

Views

Author

Keywords

Comments

This sequence differs from A061964 in that all least significant zeros are removed before concatenation.
No more terms < 10^7. - Lars Blomberg, Sep 12 2011

Examples

			See A029519 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 11; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[IntegerDigits[IntegerReverse[#, b], b], c], b], #] &] (* Robert Price, Mar 13 2020 *)
  • PARI
    lista(nn, m=11) = my(c, s, t); for(k=1, nn, t+=m^c*s=fromdigits(Vecrev(digits(k, m)), m); c+=logint(s, m)+1; if(t%k==0, print1(k, ", "))); \\ Jinyuan Wang, Dec 05 2020

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
Additional comments and more terms from Larry Reeves (larryr(AT)acm.org), May 25 2001
a(11)-a(15) from Lars Blomberg, Sep 12 2011

A029529 Numbers k such that k divides the (left) concatenation of all numbers <= k written in base 12 (most significant digit on right and removing all least significant zeros before concatenation).

Original entry on oeis.org

1, 11, 143, 1771, 1931, 3223, 7409, 17017, 32417, 125477, 863203
Offset: 1

Views

Author

Keywords

Comments

This sequence differs from A061965 in that all least significant zeros are removed before concatenation.
No more terms < 10^7. - Lars Blomberg, Sep 14 2011

Examples

			See A029519 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 12; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[IntegerDigits[IntegerReverse[#, b], b], c], b], #] &] (* Robert Price, Mar 13 2020 *)
  • PARI
    lista(nn, m=12) = my(c, s, t); for(k=1, nn, t+=m^c*s=fromdigits(Vecrev(digits(k, m)), m); c+=logint(s, m)+1; if(t%k==0, print1(k, ", "))); \\ Jinyuan Wang, Dec 05 2020

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
Additional comments and more terms from Larry Reeves (larryr(AT)acm.org), May 25 2001
a(11) from Lars Blomberg, Sep 14 2011

A029530 Numbers k such that k divides the (left) concatenation of all numbers <= k written in base 13 (most significant digit on right and removing all least significant zeros before concatenation).

Original entry on oeis.org

1, 3, 9, 24, 48, 80, 96, 184, 549, 1083, 1392, 1624, 5085, 15968, 16000, 17763, 144843, 156200, 695808, 854904, 1001808, 1960016, 2002776, 2961952
Offset: 1

Views

Author

Keywords

Comments

This sequence differs from A061966 in that all least significant zeros are removed before concatenation.
No more terms < 10^7. - Lars Blomberg, Sep 15 2011

Examples

			See A029519 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 13; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[IntegerDigits[IntegerReverse[#, b], b], c], b], #] &] (* Robert Price, Mar 13 2020 *)
  • PARI
    lista(nn, m=13) = my(c, s, t); for(k=1, nn, t+=m^c*s=fromdigits(Vecrev(digits(k, m)), m); c+=logint(s, m)+1; if(t%k==0, print1(k, ", "))); \\ Jinyuan Wang, Dec 05 2020

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
Additional comments and more terms from Larry Reeves (larryr(AT)acm.org), May 25 2001
a(19)-a(24) from Lars Blomberg, Sep 15 2011

A029531 Numbers k such that k divides the (left) concatenation of all numbers <= k written in base 14 (most significant digit on right and removing all least significant zeros before concatenation).

Original entry on oeis.org

1, 13, 55, 99, 167, 185, 195, 1921, 4979, 14859, 37605, 48005, 88569, 122223, 278403, 394433, 1979771, 2082769, 2352363, 7323381
Offset: 1

Views

Author

Keywords

Comments

This sequence differs from A061967 in that all least significant zeros are removed before concatenation.
No more terms < 10^7. - Lars Blomberg, Sep 17 2011

Examples

			See A029519 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 14; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[IntegerDigits[IntegerReverse[#, b], b], c], b], #] &] (* Robert Price, Mar 13 2020 *)
  • PARI
    lista(nn, m=14) = my(c, s, t); for(k=1, nn, t+=m^c*s=fromdigits(Vecrev(digits(k, m)), m); c+=logint(s, m)+1; if(t%k==0, print1(k, ", "))); \\ Jinyuan Wang, Dec 05 2020

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
Additional comments and more terms from Larry Reeves (larryr(AT)acm.org), May 25 2001
a(17)-a(20) from Lars Blomberg, Sep 17 2011

A029532 Numbers k such that k divides the (left) concatenation of all numbers <= k written in base 15 (most significant digit on right and removing all least significant zeros before concatenation).

Original entry on oeis.org

1, 7, 17, 28, 424, 889, 2041, 2056, 2569, 3667, 3988, 7553, 8351, 13349, 28304, 28484, 38161, 41531, 60071, 126511, 444164, 588913, 681079, 2083457, 4753388, 7801841
Offset: 1

Views

Author

Keywords

Comments

This sequence differs from A061968 in that all least significant zeros are removed before concatenation.
No more terms < 10^7. [Lars Blomberg, Sep 17 2011]

Examples

			See A029519 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 15; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[IntegerDigits[IntegerReverse[#, b], b], c], b], #] &] (* Robert Price, Mar 13 2020 *)

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002 and Aug 25 2002
a(23)-a(26) from Lars Blomberg, Sep 17 2011
Previous Showing 71-80 of 142 results. Next