cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A028405 Number of equivalence classes of Boolean functions of n variables under action of M(n,2).

Original entry on oeis.org

3, 6, 16, 76, 2529, 935339497, 2060570964519821009024090, 21566641941095278268628659206747626784474429009806143425562
Offset: 1

Views

Author

Keywords

Comments

Group M(n,2) is semi-direct product of LSD(n,2) (cf. A028407) and complementing group C(n,2).

References

  • V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

Crossrefs

Extensions

More terms from Vladeta Jovovic

A028407 Number of equivalence classes of Boolean functions of n variables under action of LSD(n,2).

Original entry on oeis.org

4, 12, 44, 344, 33328, 58616531552, 263752837930654539573558624, 5521060336920386409400918079935910963482577804036340308751264
Offset: 1

Views

Author

Keywords

Comments

Linear self-dual group LSD(n,2) is group of n X n non-singular matrices over GF(2) with odd number of units in each row.

References

  • V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

Crossrefs

Cf. A000585.

Extensions

More terms from Vladeta Jovovic

A063387 Number of solutions of x^4=1 in general affine group AGL(n,2).

Original entry on oeis.org

2, 16, 512, 45376, 8556032, 4883562496, 8980929708032, 42613515533418496, 486724235988568113152, 16895428758428581359517696, 1832013338159753885910032187392, 514041193283459103260028716172967936
Offset: 1

Views

Author

Vladeta Jovovic, Jul 16 2001

Keywords

Crossrefs

A063388 Number of solutions of x^5=1 in general affine group AGL(n,2).

Original entry on oeis.org

1, 1, 1, 21505, 10665985, 3583770625, 1040317415425, 22653952038273025, 2926557495587739009025, 255470267616151345324621825, 19124940736236376955275154817025, 1747866583310404907502405460766490625
Offset: 1

Views

Author

Vladeta Jovovic, Jul 16 2001

Keywords

Crossrefs

A070731 Size of largest conjugacy class in the group GL(n,2).

Original entry on oeis.org

1, 3, 56, 3360, 833280, 959938560, 3901190307840, 63667425823948800, 4759267415191820697600, 1246395024829755538853068800
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 15 2002

Keywords

Crossrefs

Extensions

More terms from Vladeta Jovovic, Jun 03 2002

A063389 Number of solutions of x^6=1 in general affine group AGL(n,2).

Original entry on oeis.org

2, 18, 540, 75168, 35803296, 52295889024, 165440621998080, 1667054559389773824, 57054517078704967876608, 7229212455140774474869112832, 3089828410800189940613202019614720
Offset: 1

Views

Author

Vladeta Jovovic, Jul 16 2001

Keywords

Crossrefs

A063390 Number of solutions of x^7=1 in general affine group AGL(n,2).

Original entry on oeis.org

1, 1, 385, 46081, 3809281, 27335393281, 219971402072065, 1196544590358773761, 34605327838407410319361, 15221801372279275206853263361, 5309386094113063403935896849874945
Offset: 1

Views

Author

Vladeta Jovovic, Jul 16 2001

Keywords

Crossrefs

A063391 Number of solutions of x^8=1 in general affine group AGL(n,2).

Original entry on oeis.org

2, 16, 512, 65536, 33554432, 68719476736, 562949953421312, 13098680304497852416, 668820864146264243044352, 107256832111726994824496152576, 61528102027124002571478755339927552
Offset: 1

Views

Author

Vladeta Jovovic, Jul 16 2001

Keywords

Crossrefs

A063392 Number of solutions of x^9=1 in general affine group AGL(n,2).

Original entry on oeis.org

1, 9, 225, 6273, 968193, 20785780737, 166595296845825, 8149768955751661569, 951855018651756891865089, 115831656001165053232244326401, 75552701461152667657380793652609025
Offset: 1

Views

Author

Vladeta Jovovic, Jul 16 2001

Keywords

Crossrefs

A063407 Number of cyclic subgroups of order 4 of general affine group AGL(n,2).

Original entry on oeis.org

0, 3, 210, 21840, 4248240, 2439718848, 4490186803200, 21306683553761280, 243362078944548372480, 8447714338361362064867328, 916006668995029638614026813440, 257020596641378222874290942398955520
Offset: 1

Views

Author

Vladeta Jovovic, Jul 17 2001

Keywords

Comments

Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).

Crossrefs

Formula

a(n) = (A063387(n)-A063385(n))/2.
Previous Showing 11-20 of 25 results. Next