cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A365267 G.f. satisfies A(x) = 1 + x*A(x)^2*(1 + x^3*A(x)).

Original entry on oeis.org

1, 1, 2, 5, 15, 47, 153, 513, 1763, 6177, 21981, 79224, 288611, 1061019, 3931320, 14666135, 55041855, 207668702, 787225265, 2996851140, 11452198368, 43915195973, 168930713580, 651708006690, 2520840672423, 9774511167507, 37985839339052
Offset: 0

Views

Author

Seiichi Manyama, Aug 30 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n-3*k, k)*binomial(2*n-5*k+1, n-3*k)/(2*n-5*k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k,k) * binomial(2*n-5*k+1,n-3*k)/(2*n-5*k+1).

A370798 Expansion of (1/x) * Series_Reversion( x/(x+1/(1-x-x^4)) ).

Original entry on oeis.org

1, 2, 5, 15, 52, 200, 824, 3549, 15745, 71343, 328537, 1532838, 7230341, 34425026, 165230211, 798643501, 3884110353, 18993027790, 93325418867, 460562269745, 2281769792691, 11344607718373, 56585135577335, 283067227288767, 1419859530338142, 7139644680794750
Offset: 0

Views

Author

Seiichi Manyama, Mar 02 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/(x+1/(1-x-x^4)))/x)

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * b(k), where g.f. B(x) = Sum_{k>=0} b(k)*x^k satisfies B(x) = (1/x) * Series_Reversion( x*(1-x-x^4) ).
Previous Showing 11-12 of 12 results.