A075421
Trajectory of n under the Reverse and Add! operation carried out in base 4 (presumably) does not reach a palindrome and (presumably) does not join the trajectory of any term m < n.
Original entry on oeis.org
290, 318, 719, 795, 799, 1210, 3903, 4199, 4207, 4219, 4236, 4278, 4279, 4294, 4326, 4333, 4334, 4338, 4402, 4598, 4662, 4726, 5046, 5357, 6157, 6174, 7246, 7247, 7295, 7407, 7549, 8063, 8191, 9211, 12319, 12431, 12463, 12539, 15487, 16519, 16587
Offset: 1
719 is a term since the trajectory of 719 (presumably) does not lead to an integer which occurs in the trajectory of 290 or of 318.
-
limit = 10^3; (* Assumes that there is no palindrome if none is found before "limit" iterations *)
utraj = {};
Select[Range[0, 17000], (x = NestWhileList[# + IntegerReverse[#, 4] &, #, # !=IntegerReverse[#, 4] & , 1, limit];
If[Length[x] >= limit && Intersection[x, utraj] == {},
utraj = Union[utraj, x]; True,
utraj = Union[utraj, x]]) &] (* Robert Price, Oct 16 2019 *)
A077594
Smallest number whose Reverse and Add! trajectory (presumably) contains exactly n palindromes, or -1 if there is no such number.
Original entry on oeis.org
196, 89, 49, 18, 9, 14, 7, 6, 3, 4, 2, 1, 10000, -1, -1, -1, -1, -1, -1, -1, -1
Offset: 0
a(9) = 4 since the trajectory of 4 contains the nine palindromes 4, 8, 77, 1111, 2222, 4444, 8888, 661166, 3654563 and at 7309126 joins the trajectory of 10577 = A063048(6) and no m < 4 contains exactly nine palindromes.
A088753
Numbers k such that the Reverse and Add! trajectory of k (presumably) does not reach a palindrome (with the exception of k itself) and does not join the trajectory of any term m < k.
Original entry on oeis.org
196, 879, 1997, 7059, 9999, 10553, 10563, 10577, 10583, 10585, 10638, 10663, 10668, 10697, 10715, 10728, 10735, 10746, 10748, 10783, 10785, 10787, 10788, 10877, 10883, 10963, 10965, 10969, 10977, 10983, 10985, 12797, 12898, 13097, 13197, 13694, 14096, 14698, 15297, 15597, 18598, 18798
Offset: 1
From _M. F. Hasler_, Apr 13 2019: (Start)
All numbers < 196 quickly reach a palindrome under iterations of the reverse-and-add function A056964, cf. A033665.
a(1) = 196 is the smallest integer which appears to never reach a palindrome (checked up to 10^9 iterations!).
Next, A056964(196) = 196 + 691 = 887 is in the orbit of 196 and will therefore never reach a palindrome if 196 does not. However, we do not list this term in this sequence because it is in the orbit of the smaller term 196.
Similarly, 295 + 592 = 887 = A056964(196). Therefore, 295 will also never reach a palindrome if 196 (and therefore 887) doesn't. But again we will not list this number, because its orbit merges into that of the smaller term 196.
The next number which appears to be a Lychrel and has an orbit (conjectured to be) disjoint with that of 196 is 897 = a(2). (End)
-
limit = 10^3; (* Assumes that there is no palindrome if none is found before "limit" iterations *)
utraj = {};
Select[Range[0,
20000], (np = # + IntegerReverse[#];
x = NestWhileList[ # + IntegerReverse[#] &, np, ! PalindromeQ[#] &, 1, limit];
If[Length[x] >= limit && Intersection[x, utraj] == {},
utraj = Union[utraj, x, {np}]; True,
utraj = Union[utraj, x, {np}]]) &] (* Robert Price, Oct 16 2019 *)
-
A088753_upto(LIM=2e4,M=1e199)={my(U=[],a=List());for(n=1,LIM, my(t=n); while( tA002113(t=A056964(t)) && next(2)); setsearch(U,t) && next; U=setunion(U,[t]); print1(n","); listput(a,n)); Set(a)} \\ M. F. Hasler, Apr 13 2019
A077405
Trajectory of n under the Reverse and Add! operation carried out in base 3 (presumably) does not reach a palindrome and (presumably) does not join the trajectory of any term m < n.
Original entry on oeis.org
103, 746, 805, 2231, 2326, 2671, 2725, 2959, 2969, 3679, 4421, 4430, 4439, 4448, 5894, 6626, 6638, 6686, 6698, 6733, 6741, 6779, 6789, 6793, 6943, 7124, 7365, 7849, 8093, 8801, 8836, 10771, 11078, 11158, 13184, 13361, 17558, 17639, 19115, 19196, 19733, 19895, 19901, 19907, 20106, 20124, 20149, 20161
Offset: 1
805 is a term since the trajectory of 805 (presumably) does not lead to a number which occurs in the trajectory of 103 or of 746.
-
limit = 10^3; (* Assumes that there is no palindrome if none is found before "limit" iterations *)
utraj = {};
Select[Range[0,21000], (i = 0;
x = NestWhileList[(i++; # + IntegerReverse[#, 3]) &, #, # !=
IntegerReverse[#, 3] && i < limit &];
If[i >= limit && Intersection[x, utraj] == {},
utraj = Union[utraj, x]; True,
utraj = Union[utraj, x]]) &]
(* Robert Price, Oct 19 2019 *)
A089494
a(n) = smallest non-palindromic k such that the Reverse and Add! trajectory of k is palindrome-free and joins the trajectory of A070788(n).
Original entry on oeis.org
10577, 1000000537869, 100000070637875, 10004697841, 10000671273, 100010097365, 990699, 1997, 19098, 10563, 109918, 10735, 101976, 1060004932996, 100059426, 90379, 10003991597, 100000089687980, 90900469909, 13097, 1005989
Offset: 1
A070788(1) = 1, the trajectory of 1 joins the trajectory of 10577 = A063048(7) at 7309126, so a(1) = 10577.
A070788(8) = 106, the trajectory of 106 joins the trajectory of 1997 = A063048(3) at 97768, so a(8) = 1997.
A306596
Trajectory of n under the Reverse and Add! operation carried out in base 8 (presumably) does not reach a palindrome and (presumably) does not join the trajectory of any term m < n.
Original entry on oeis.org
1021, 3623, 4327, 4382, 4404, 4413, 4444, 4500, 4502, 4518, 4522, 4528, 4530, 4575, 4592, 4594, 5117, 5502, 5629, 6270, 7806, 8247, 8607, 12503, 12527, 12535, 16319, 16383, 16815, 20711, 20975, 24751, 25015, 28351, 28415, 28671, 28775, 28791, 33757, 33766, 34254, 34286, 34757, 34781, 35268, 35276
Offset: 1
A090069
Numbers n such that there are (presumably) eight palindromes in the Reverse and Add! trajectory of n.
Original entry on oeis.org
3, 8, 20, 22, 100, 101, 116, 122, 139, 151, 160, 215, 221, 238, 313, 314, 320, 337, 343, 413, 436, 512, 611, 634, 696, 710, 717, 727, 733, 832, 931, 1004, 1011, 1070, 1101, 1160, 1250, 1340, 1430, 1520, 1610, 1700, 1771, 2000, 2002, 2003, 2010, 2100, 2112
Offset: 1
The trajectory of 8 begins 8, 16, 77, 154, 605, 1111, 2222, 4444, 8888, 17776, 85547, 160105, 661166, 1322332, 3654563, 7309126, ...; at 7309126 it joins the (presumably) palindrome-free trajectory of A063048(7) = 10577, hence 8, 77, 1111, 2222, 4444, 8888, 661166 and 3654563 are the eight palindromes in the trajectory of 8 and 8 is a term.
A090070
Numbers n such that there are (presumably) nine palindromes in the Reverse and Add! trajectory of n.
Original entry on oeis.org
4, 10, 11, 535, 1000, 1001, 10007, 10101, 20006, 30005, 50003, 60002, 70001, 80000, 80008, 100070, 110060, 120050, 130040, 140030, 150020, 160010, 170000, 170071, 200000, 200002, 1000003, 1000150, 1001001, 1010050, 1100140, 1110040, 1200130
Offset: 1
The trajectory of 4 begins 4, 8, 16, 77, 154, 605, 1111, 2222, 4444, 8888, 17776, 85547, 160105, 661166, 1322332, 3654563, 7309126, ...; at 7309126 it joins the (presumably) palindrome-free trajectory of A063048(7) = 10577, hence 4, 8, 77, 1111, 2222, 4444, 8888, 661166 and 3654563 are the nine palindromes in the trajectory of 4 and 4 is a term.
A090071
Numbers n such that there are (presumably) ten palindromes in the Reverse and Add! trajectory of n.
Original entry on oeis.org
2, 5, 10003, 30001, 40000, 40004, 100000, 100001, 2000000, 2000002
Offset: 1
The trajectory of 2 begins 2, 4, 8, 16, 77, 154, 605, 1111, 2222, 4444, 8888, 17776, 85547, 160105, 661166, 1322332, 3654563, 7309126, ...; at 7309126 it joins the (presumably) palindrome-free trajectory of A063048(7) = 10577, hence 2, 4, 8, 77, 1111, 2222, 4444, 8888, 661166 and 3654563 are the ten palindromes in the trajectory of 2 and 2 is a term.
A090072
Numbers n such that there are (presumably) eleven palindromes in the Reverse and Add! trajectory of n.
Original entry on oeis.org
1, 20000, 20002, 1000000, 1000001, 10000000, 10000001
Offset: 1
The trajectory of 1 begins 1, 2, 4, 8, 16, 77, 154, 605, 1111, 2222, 4444, 8888, 17776, 85547, 160105, 661166, 1322332, 3654563, 7309126, ...; at 7309126 it joins the (presumably) palindrome-free trajectory of A063048(7) = 10577, hence 1, 2, 4, 8, 77, 1111, 2222, 4444, 8888, 661166 and 3654563 are the eleven palindromes in the trajectory of 1 and 1 is a term.
Comments