A181682 a(n) = smallest number k such that k is divisible by 2^n, k+1 is divisible by 3^n and k+2 is divisible by 5^n.
8, 548, 21248, 561248, 18381248, 212781248, 5315781248, 70925781248, 9912425781248, 364206425781248, 4497636425781248, 465079836425781248, 5779489836425781248, 181155019836425781248, 2572639519836425781248
Offset: 1
Keywords
Examples
a(2) = 548 = 2 ^ 2 * 137 ; 549 = 3 ^ 2 * 61 ; 550 = 2 * 5 ^ 2 * 11.
Crossrefs
Cf. A063528.
Programs
-
Maple
with(numtheory): for k from 1 to 4 do: kk:=0:for n from 1 to 600000 do: xx:=2^k:yy:=3^k: zz:=5^k:if irem(n,xx) =0 and irem(n+1,yy) =0 and irem(n+2,zz) =0 and kk=0 then kk:=1:print(k):print(n):else fi:od:od:
-
Mathematica
Table[ChineseRemainder[{0, -1, -2}, {2^n, 3^n, 5^n}], {n, 15}]
Comments