cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A327875 Numbers k such that s(k) = s(k+1) where s(k) is the sum of unitary, squarefree divisors of k, including 1 (A092261).

Original entry on oeis.org

8, 14, 288, 675, 735, 957, 1334, 1634, 2685, 2871, 5750, 8055, 9800, 12104, 12167, 20145, 33998, 42818, 71994, 74918, 79826, 79833, 84134, 111506, 122073, 138237, 144990, 147454, 166934, 201597, 235224, 274533, 289454, 324423, 332928, 347738, 383594, 400315
Offset: 1

Views

Author

Amiram Eldar, Sep 28 2019

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e==1, p+1, 1]; s[n_] := Times @@ f @@@ FactorInteger[n]; s1=0; seq = {}; Do[s2 = s[n]; If[s1 == s2, AppendTo[seq, n-1]]; s1 = s2, {n,1,10000}]; seq
  • PARI
    s(n)={sumdiv(n, d, d*issquarefree(d)*(gcd(d, n/d) == 1))}
    { for(k=1, 10^6, if(s(k)==s(k+1), print1(k, ", "))) } \\ Andrew Howroyd, Sep 28 2019

Formula

8 is in the sequence since A092261(8) = A092261(9) = 1.

A349063 Numbers k such that k and k+1 have the same sum of powerful divisors (A183097) and this sum is larger than 1.

Original entry on oeis.org

2988, 4067, 7595, 13572, 14651, 24156, 25235, 27684, 28763, 34740, 35819, 38268, 39347, 41327, 46403, 48852, 49931, 56987, 59436, 66492, 70020, 78155, 81683, 87660, 88739, 91188, 98244, 99323, 101772, 102851, 108828, 109907, 112356, 113435, 119412, 120491, 122940
Offset: 1

Views

Author

Amiram Eldar, Nov 07 2021

Keywords

Comments

Numbers k such that A183097(k) = A183097(k+1) > 1.

Examples

			2988 is a term since = A183097(2988) = A183097(2989) = 50 > 1.
		

Crossrefs

Cf. A183097.
Similar sequences: A002961, A064115, A064125, A293183, A306985.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - p; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := (s1 = s[n]) > 1 && s1 == s[n + 1]; Select[Range[10^5], q]

A349224 Number k such that A033634(k) = A033634(k+1).

Original entry on oeis.org

11, 14, 957, 1334, 1485, 1634, 2685, 4136, 9347, 13915, 16260, 16499, 20145, 29903, 33998, 37236, 42251, 42818, 55308, 56419, 74918, 77748, 79826, 79833, 84134, 86343, 109864, 111506, 122073, 138237, 142116, 147454, 166934, 168739, 178356, 184260, 187863, 194028
Offset: 1

Views

Author

Amiram Eldar, Nov 11 2021

Keywords

Examples

			11 is a term since A033634(11) = A033634(12) = 12.
		

Crossrefs

Cf. A033634.
Similar sequences: A002961, A064115, A064125, A293183, A306985.

Programs

  • Mathematica
    f[e_] := If[OddQ[e], e+2, e+1]; fun[p_, e_] := 1 + (p^f[e] - p)/(p^2 - 1); s[1] = 1; s[n_] := Times @@ (fun @@@ FactorInteger[n]); Select[Range[2*10^5], s[#] == s[#+1] &]

A349283 Numbers k such that A051378(k) = A051378(k+1).

Original entry on oeis.org

14, 206, 957, 1334, 1364, 1485, 1634, 2685, 2974, 4136, 4364, 14841, 20145, 24957, 33998, 36566, 42818, 61183, 64672, 74918, 79826, 79833, 84134, 86343, 92685, 104192, 109864, 111506, 122073, 138237, 147454, 159711, 162602, 166934, 187863, 190773, 193893, 201597
Offset: 1

Views

Author

Amiram Eldar, Nov 13 2021

Keywords

Comments

First differs from A333949 at n = 18.

Examples

			14 is a term since A051378(14) = A051378(15) = 24.
		

Crossrefs

Cf. A051378.
Similar sequences: A002961, A064115, A064125, A293183, A306985, A333949.

Programs

  • Mathematica
    s[1] = 1; s[n_] := Times @@ (1 + Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; Select[Range[2*10^5], s[#] == s[#+1] &]

A355713 Numbers k such that k and k+1 have the same sum of 5-smooth divisors.

Original entry on oeis.org

175, 2224, 2575, 4975, 7024, 9424, 9775, 11824, 12175, 14224, 14575, 16975, 19024, 21424, 21775, 23824, 24175, 26224, 26575, 28975, 31024, 33424, 33775, 35824, 36175, 38224, 38575, 40975, 43024, 45424, 45775, 47824, 48175, 50224, 50575, 52975, 55024, 57424, 57775
Offset: 1

Views

Author

Amiram Eldar, Jul 15 2022

Keywords

Comments

Numbers k such that A355584(k) = A355584(k+1).
Equivalently, numbers k such that the largest 5-smooth divisors of k and k+1, A355582(k) and A355582(k+1), have the same sum of divisors (A000203).
For all the terms k, both k and k+1 are not squarefree: each of the two largest 5-smooth divisors, of k and k+1, cannot be squarefree, since the squarefree 5-smooth numbers are the divisors of 30 = 2*3*5 (A018255) whose values of sigma (A000203), {1, 3, 4, 6, 12, 18, 24, 72}, are not shared with sigma of any other 5-smooth number.
Apparently, all the terms are of only two types: numbers k such that A355582(k) = 16 and A355582(k+1) = 25, or numbers k such that A355582(k) = 25 and A355582(k+1) = 16. Both types are infinite sequences: The first type is the sequence of numbers of the form 2224 + 2400*m, where m is not congruent to 1 (mod 5), and the second type is the sequence of numbers of the form 175 + 2400*m, where m is not congruent to 3 (mod 5). If there are no other terms, then this sequence is a linear recurrence with a signature (1,0,0,0,0,0,0,1,-1). The question of the existence of other types is equivalent to the question of the existence of two coprime 5-smooth numbers other than 16 and 25 whose sums of divisors are equal.
Are there runs of 3 consecutive numbers with the same sum of 5-smooth divisors? There are no such runs below 5*10^10.

Examples

			175 is a term since A355584(175) = A355584(176) = 31.
		

Crossrefs

Subsequence of A013929 and A068781.
Similar sequences: A002961, A064115, A064125, A293183, A306985, A333949.

Programs

  • Mathematica
    f[p_, e_] := If[p > 5, 1, (p^(e + 1) - 1)/(p - 1)]; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[10^5], s[#] == s[# + 1] &]
  • PARI
    s(n) = (2^(valuation(n, 2) + 1) - 1) * (3^(valuation(n, 3) + 1) - 1) * (5^(valuation(n, 5) + 1) - 1) / 8;
    s1 = s(1); for(k = 2, 6e4, s2 = s(k); if(s1 == s2, print1(k-1,", ")); s1 = s2);

A360527 Numbers k such that A360522(k) = A360522(k+1).

Original entry on oeis.org

4, 8, 14, 176, 895, 956, 957, 1334, 1634, 1724, 1725, 1844, 1934, 2685, 2871, 3404, 3759, 4047, 4136, 5175, 7004, 7315, 7599, 8055, 12104, 13760, 18415, 20145, 29392, 32944, 33998, 42818, 44095, 44516, 49599, 60356, 74918, 79826, 79833, 84134, 85172, 85744, 86343
Offset: 1

Views

Author

Amiram Eldar, Feb 10 2023

Keywords

Comments

Numbers k such that A360522(k) = A360522(k+1) = A360522(k+2) exist: 956 and 1724. Are there any other terms like these? There are none below 1.8*10^10.

Examples

			4 is a term since A360522(4) = A360522(5) = 6.
		

Crossrefs

Cf. A360522.
Similar sequences: A002961, A064115, A064125, A293183, A306985.

Programs

  • Mathematica
    f[p_, e_] := p^e + e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Position[Partition[Array[s, 10^5], 2, 1], _?(SameQ @@ # &)] // Flatten
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] + f[i,2]);}
    lista(nmax) = {my(s1 = s(1), s2); for(n=2, nmax, s2=s(n); if(s1 == s2, print1(n-1, ", ")); s1 = s2); }

A362400 Numbers k such that A162296(k) = A162296(k+1) > 0.

Original entry on oeis.org

135, 819, 1863, 9207, 10340, 41124, 75051, 95336, 278972, 305091, 465596, 544924, 570411, 711027, 903804, 977876, 1114695, 1327095, 1444779, 1520684, 1760571, 1987371, 2083491, 2303091, 2581928, 2842324, 2869011, 3062631, 3243140, 4043624, 4335848, 4469984, 4598091
Offset: 1

Views

Author

Amiram Eldar, Apr 18 2023

Keywords

Comments

A162296(k) = A162296(k+1) = 0 if and only if k and k+1 are both squarefree (A005117), i.e., k is in A007674.

Examples

			135 is a term since A162296(135) = A162296(136) = 216.
		

Crossrefs

Subsequence of A013929 and A068781.

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1)]; Select[Range[2, 5*10^6], (sn = s[#]) > 0 && sn == s[# + 1] &]
  • PARI
    s(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; ((p^(e + 1) - 1)/(p - 1))) -  prod(i = 1, #f~, f[i, 1] + 1);}
    lista(kmax) = {my(s1 = s(1), s2); for(k=2, kmax, s2 = s(k); if(s1 > 0 && s2 == s1, print1(k-1, ", ")); s1 = s2); }

A379032 Numbers k such that k and k+1 have an equal sum of modified exponential divisors: A241405(k) = A241405(k+1).

Original entry on oeis.org

14, 44, 957, 1334, 1485, 1634, 1652, 2204, 2685, 3195, 3451, 3956, 4136, 5547, 8495, 8636, 8907, 9844, 11515, 12256, 14876, 15608, 19491, 20145, 20155, 27519, 27643, 33998, 35235, 36575, 38180, 41265, 41547, 42818, 45716, 48364, 74918, 79316, 79826, 79833, 84134
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2024

Keywords

Crossrefs

Cf. A241405.
Similar sequences: A002961, A064115, A064125, A293183, A306985.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e + 1, p^(# - 1) &]; mesigma[1] = 1; mesigma[n_] := mesigma[n] = Times @@ f @@@ FactorInteger[n]; Select[Range[10^5], mesigma[#] == mesigma[#+1] &]
  • PARI
    mesigma(n) = {my(f=factor(n)); prod(i=1, #f~, sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1))); }
    lista(kmax) = {my(m1 = 1, m2); for(k = 2, kmax, m2 = mesigma(k); if(m1 == m2, print1(k-1, ", ")); m1 = m2);}

A333954 Numbers k such that A330575(k) = A330575(k+1).

Original entry on oeis.org

14, 16101, 72926, 97101, 2872701, 7610324
Offset: 1

Views

Author

Amiram Eldar, Apr 11 2020

Keywords

Comments

a(7) > 6*10*8.

Examples

			14 is a term since A330575(14) = A330575(15) = 26.
		

Crossrefs

Cf. A330575.
Similar sequences: A002961, A064115, A064125, A293183, A306985.

Programs

  • Mathematica
    s[1] = 1; s[n_] := s[n] = n + DivisorSum[n, s[#] &, # < n &]; seq = {}; s1 = s[1]; Do[s2 = s[n]; If[s1 == s2, AppendTo[seq, n-1]]; s1 = s2, {n, 2, 10^5}]; seq

A348628 Numbers k such that k and k+1 have the same sum of nonexponential divisors (A160135).

Original entry on oeis.org

1, 2, 3, 4, 15, 44, 674, 478899
Offset: 1

Views

Author

Amiram Eldar, Oct 26 2021

Keywords

Comments

Numbers k such that A160135(k) = A160135(k+1).
a(9) > 1.6 * 10^11, if it exists.

Examples

			2 is a term since A160135(2) = A160135(3) = 1.
15 is a term since A160135(15) = A160135(16) = 9.
		

Crossrefs

Cf. A160135.
Similar sequences: A002961, A064115, A064125, A293183, A306985, A348346.

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; s[1] = 1; s[n_] := DivisorSigma[1, n] - esigma[n]; Select[Range[500000], s[#] == s[# + 1] &]
Previous Showing 11-20 of 20 results.