cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 118 results. Next

A245448 Permutation of natural numbers: a(n) = A064216(A064216(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 11, 10, 7, 9, 14, 17, 31, 13, 6, 12, 34, 8, 23, 59, 41, 71, 16, 19, 39, 25, 26, 58, 37, 61, 30, 44, 22, 33, 49, 18, 85, 86, 15, 38, 69, 29, 151, 35, 55, 42, 107, 57, 97, 106, 21, 191, 122, 53, 111, 134, 74, 145, 109, 46, 82, 89, 50, 47, 36, 157, 133, 121, 43, 92, 110, 68, 52, 131, 28
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2014

Keywords

Crossrefs

Inverse: A245447.
Fixed points: A245449.

Programs

Formula

a(n) = A064216(A064216(n)).
For all n >= 1, A243502(n) = A243501(a(n)).

A349397 Dirichlet convolution of A064216 with the Dirichlet inverse of its inverse permutation.

Original entry on oeis.org

1, 0, 0, 0, 0, -1, 5, -8, 0, 6, 3, -2, 0, -19, 5, 4, 4, -20, 19, -22, -6, 15, -3, 8, 0, 0, -16, -16, 18, -24, 40, -70, -9, 24, -21, 8, 50, -55, -8, 24, -6, 31, 15, -58, -20, 17, 31, -92, -2, -70, 37, 24, 0, 20, 49, 18, -6, -26, 13, -33, 15, -62, -158, -20, 22, -15, 49, -130, 67, 48, 49, -58, 29, -112, -4, 60, -73, -16
Offset: 1

Views

Author

Antti Karttunen, Nov 19 2021

Keywords

Comments

Dirichlet convolution of A064216 with A323893, which is the Dirichlet inverse of A048673. Therefore, convolving A048673 with this sequence gives A064216.
Note how for n = 1 .. 35, a(n) = -A349398(n).

Crossrefs

Cf. A003961, A048673, A064216, A064989, A323893, A349398 (Dirichlet inverse), A349399 (sum with it), A349384.
Cf. also pairs A349376, A349377 and A349613, A349614 for similar constructions.

Programs

  • PARI
    A048673(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (1/2)*(1+factorback(f)); };
    A064216(n) = { my(f = factor(n+n-1)); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    memoA323893 = Map();
    A323893(n) = if(1==n,1,my(v); if(mapisdefined(memoA323893,n,&v), v, v = -sumdiv(n,d,if(dA048673(n/d)*A323893(d),0)); mapput(memoA323893,n,v); (v)));
    A349397(n) = sumdiv(n,d,A064216(n/d)*A323893(d));

Formula

a(n) = Sum_{d|n} A064216(n/d) * A323893(d).

A245609 Permutation of natural numbers: a(n) = A244319(A064216(n)).

Original entry on oeis.org

1, 3, 2, 6, 9, 26, 8, 5, 56, 344, 21, 36, 4, 11, 204, 86, 25, 16, 176, 39, 518, 24, 125, 1376, 14, 7, 1268, 10, 51, 3186, 126, 1015, 298, 476, 305, 3204, 590, 115, 50, 5636, 15, 7118, 22, 825, 162, 2388, 153, 34, 626, 45, 4356, 144, 301, 156, 4374, 131, 816, 454, 49, 260, 44, 995, 52, 168, 81
Offset: 1

Views

Author

Antti Karttunen, Jul 29 2014

Keywords

Crossrefs

Programs

Formula

a(n) = A244319(A064216(n)).

A286372 a(n) = A286366(A064216(n)).

Original entry on oeis.org

4, 6, 8, 13, 4, 9, 8, 11, 13, 12, 14, 8, 28, 6, 9, 13, 11, 21, 9, 11, 13, 12, 8, 8, 40, 14, 9, 65, 14, 13, 8, 13, 64, 13, 11, 8, 9, 30, 20, 12, 4, 9, 21, 11, 8, 21, 14, 20, 12, 9, 12, 13, 23, 9, 8, 11, 13, 64, 8, 84, 28, 14, 116, 12, 14, 9, 85, 11, 8, 12, 11, 65, 65, 42, 8, 13, 13, 21, 9, 11, 21, 13, 66, 8, 28, 12, 9, 49, 14, 13, 8, 11, 65, 20, 14, 13, 9, 66
Offset: 1

Views

Author

Antti Karttunen, May 09 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A286366(A064216(n)).

A243502 Permutation of even numbers: a(n) = 2 * A064216(n).

Original entry on oeis.org

2, 4, 6, 10, 8, 14, 22, 12, 26, 34, 20, 38, 18, 16, 46, 58, 28, 30, 62, 44, 74, 82, 24, 86, 50, 52, 94, 42, 68, 106, 118, 40, 66, 122, 76, 134, 142, 36, 70, 146, 32, 158, 78, 92, 166, 110, 116, 102, 178, 56, 194, 202, 60, 206, 214, 124, 218, 114, 88, 130, 98, 148, 54, 226, 164, 254, 170, 48
Offset: 1

Views

Author

Antti Karttunen, Jul 21 2014

Keywords

Crossrefs

Programs

Formula

a(n) = 2 * A064216(n) = A005843(A064216(n)).
a(n) = A243501(A245448(n)).

A246268 Permutation of natural numbers: a(n) = A246264(A064216(2*n)).

Original entry on oeis.org

1, 2, 4, 3, 7, 9, 5, 16, 6, 12, 18, 19, 14, 11, 24, 10, 29, 34, 8, 38, 43, 21, 26, 23, 15, 52, 53, 30, 27, 32, 39, 56, 62, 13, 66, 41, 22, 69, 46, 49, 73, 77, 35, 20, 84, 59, 48, 88, 33, 98, 57, 40, 100, 60, 68, 106, 116, 36, 64, 119, 17, 93, 125, 42, 72, 132, 80, 140, 31, 58, 145, 91, 86, 74, 104, 96, 151, 158, 28
Offset: 1

Views

Author

Antti Karttunen, Aug 21 2014

Keywords

Comments

This permutation is induced when A064216 is restricted to even numbers (equally, when A064989 is restricted to the numbers of form 4n-1) and the resulting numbers are "ranked" with A246264.

Crossrefs

Inverse: A246267.

Formula

a(n) = A246264(A064216(2*n)).
a(n) = A246264(A064989((4*n)-1)).

A246364 Permutation of natural numbers: a(n) = A064216(A227413(n)).

Original entry on oeis.org

1, 2, 5, 3, 7, 11, 13, 4, 6, 9, 19, 14, 8, 12, 29, 10, 17, 31, 23, 16, 41, 71, 37, 44, 47, 39, 43, 42, 38, 30, 26, 59, 22, 34, 15, 85, 53, 58, 25, 130, 57, 151, 61, 311, 103, 69, 33, 365, 157, 111, 73, 226, 74, 106, 67, 370, 223, 56, 97, 341, 139, 122, 35, 133, 55, 86, 20, 145, 46, 49, 21, 659, 118, 36, 83, 419, 127, 191, 18
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2014

Keywords

Comments

After a(2) = 2, the rest of the even bisection contains only terms of A246261. However, some of the terms of A246261 are also found in the odd bisection, while terms of A246263, apart from 2, all reside in the odd bisection of this sequence.

Crossrefs

Inverse: A246363.
Related or similar permutations: A064216, A227413, A246366, A246368.

Programs

Formula

a(n) = A064216(A227413(n)).

A270430 Numbers n such that A048673(n) and A064216(n) are of the same parity.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 16, 17, 20, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 48, 49, 50, 52, 53, 58, 62, 64, 65, 68, 69, 74, 75, 77, 80, 81, 82, 85, 90, 93, 97, 98, 99, 100, 101, 102, 104, 105, 106, 108, 109, 111, 113, 114, 116, 117, 120, 121, 124, 125, 126, 128, 130, 132, 133, 136, 137, 139, 141, 144
Offset: 1

Views

Author

Antti Karttunen, Mar 17 2016

Keywords

Comments

See A270434 for the possible bias favoring this sequence over the complement A270431.

Crossrefs

Complement: A270431.
Left inverse: A270432.
Cf. A245449 (a subsequence).
Cf. also A269860.

Programs

  • Mathematica
    f[n_] := (Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ n; g[n_] := Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger[2 n - 1]; Select[Range@ 144, Xor[EvenQ@ f@ #, OddQ@ g@ #] &] (* Michael De Vlieger, Mar 17 2016 *)

Formula

Other identities. For all n >= 1:
A270432(a(n)) = n.

A270431 Numbers n such that A048673(n) and A064216(n) are of opposite parity.

Original entry on oeis.org

6, 7, 11, 14, 15, 18, 19, 21, 22, 23, 24, 28, 35, 38, 43, 44, 45, 46, 47, 51, 54, 55, 56, 57, 59, 60, 61, 63, 66, 67, 70, 71, 72, 73, 76, 78, 79, 83, 84, 86, 87, 88, 89, 91, 92, 94, 95, 96, 103, 107, 110, 112, 115, 118, 119, 122, 123, 127, 129, 131, 134, 135, 138, 140, 142, 143, 146, 150, 152, 153, 157, 158, 159, 162
Offset: 1

Views

Author

Antti Karttunen, Mar 17 2016

Keywords

Comments

See comments in A270434.

Crossrefs

Complement: A270430.
Left inverse: A270433.
Cf. also A269861.

Programs

  • Mathematica
    f[n_] := (Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ n; g[n_] := Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger[2 n - 1]; Select[Range@ 162, Xor[EvenQ@ f@ #, EvenQ@ g@ #] &] (* Michael De Vlieger, Mar 17 2016 *)

Formula

Other identities. For all n >= 1:
A270433(a(n)) = n.

A285703 a(n) = A000203(A064216(n)).

Original entry on oeis.org

1, 3, 4, 6, 7, 8, 12, 12, 14, 18, 18, 20, 13, 15, 24, 30, 24, 24, 32, 36, 38, 42, 28, 44, 31, 42, 48, 32, 54, 54, 60, 42, 48, 62, 60, 68, 72, 39, 48, 74, 31, 80, 56, 72, 84, 72, 90, 72, 90, 56, 98, 102, 72, 104, 108, 96, 110, 80, 84, 84, 57, 114, 40, 114, 126, 128, 108, 60, 132, 138, 132, 96, 96, 93, 140, 150, 98, 120, 152, 144, 120, 158, 96, 164, 133, 126
Offset: 1

Views

Author

Antti Karttunen, Apr 26 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1, #] &@ If[n == 1, 1, Apply[Times, FactorInteger[2 n - 1] /. {p_, e_} /; p > 2 :> NextPrime[p, -1]^e]], {n, 86}] (* Michael De Vlieger, Apr 26 2017 *)
  • Scheme
    (define (A285703 n) (A000203 (A064216 n)))

Formula

a(n) = A000203(A064216(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Product_{p prime} (p^3/((p+1)*(p^2-q(p)))) = 0.8168476756..., where q(p) = prevprime(p) (A151799) if p > 2 and q(2) = 1. - Amiram Eldar, Dec 21 2023
Previous Showing 11-20 of 118 results. Next