cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A065499 Noninvertible 3 X 3 matrices over Z_n.

Original entry on oeis.org

0, 344, 8451, 176128, 465125, 8190720, 6569479, 90177536, 166341033, 750016000, 233671691, 4193648640, 878081581, 14985313280, 21730143375, 46170898432, 7384597649, 161217941760, 17874835219, 384008192000, 414816720885
Offset: 1

Views

Author

Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Nov 25 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := (g = First[ Transpose[ FactorInteger[n]]]; n^9*(1 - Apply[ Times, 1 - 1/g] Apply[ Times, 1 - 1/g^2] Apply[ Times, 1 - 1/g^3])); Table[ f[n], {n, 1, 22} ]
  • PARI
    a(n) = {my(f = factor(n), p = f[,1], e=f[,2]); n^9 - prod(k = 1, #p, (p[k]-1)*(p[k]^2-1)*(p[k]^3-1)*(p[k]^(9*e[k]-6)));} \\ Amiram Eldar, Aug 03 2024

Formula

a(n) = n^9 - A064767(n) = n^9 - n^9 * Product (1-1/p^3)*(1-1/p^2)*(1-1/p) where the product is over all the primes p that divide n.

Extensions

More terms from Robert G. Wilson v, Nov 30 2001

A115226 Order of the group of invertible 3 X 3 symmetric matrices over Z(n).

Original entry on oeis.org

1, 28, 468, 1792, 12400, 13104, 100548, 114688, 341172, 347200, 1609300, 838656, 4453488, 2815344, 5803200, 7340032, 22713088, 9552816, 44563284, 22220800, 47056464, 45060400, 141587908, 53673984, 193750000, 124697664, 248714388, 180182016, 574288624, 162489600
Offset: 1

Views

Author

T. D. Noe, Jan 16 2006

Keywords

Comments

Note that A115225 gives the number of 3 x 3 symmetric matrices having nonzero determinant. However, for composite n, a nonzero determinant is not sufficient for the matrix to be invertible; the determinant must also be relatively prime to n.

Crossrefs

Cf. A000056 (order of the group SL(2, Z_n)), A064767 (order of the group GL(3, Z_n)), A115225.

Programs

  • Mathematica
    Table[cnt=0; Do[m={{a, b, c}, {b, d, e}, {c, e, f}}; If[Det[m, Modulus->n]>0 && MatrixQ[Inverse[m, Modulus->n]], cnt++ ], {a, 0, n-1}, {b, 0, n-1}, {c, 0, n-1}, {d, 0, n-1}, {e, 0, n-1}, {f, 0, n-1}]; cnt, {n, 2, 20}]
    f[p_, e_] := p^(6*e - 4)*(p^3 - 1)*(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 10 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^(6*f[i,2] - 4)*(f[i,1]^3 - 1)*(f[i,1] - 1));} \\ Amiram Eldar, Nov 05 2022

Formula

For prime p, a(p) = (p^3-1)*(p-1)*p^2.
In general, a(n) = A115224(n) * phi(n) = A064767(n)/A000056(n).
Multiplicative with a(p^e) = p^(6*e - 4)*(p^3 - 1)*(p - 1). - Amiram Eldar, Sep 10 2020
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^4/((p-1)^3 * (p^2+p+1)^2 * (p^3+1))) = 1.03859354030263389220782701124174403591851545785245128014455467710993780757... - Vaclav Kotesovec, Sep 20 2020
Sum_{k=1..n} a(k) ~ c * n^7, where c = (1/7) * Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^5) = 0.08230753362... . - Amiram Eldar, Nov 05 2022

Extensions

More terms from Amiram Eldar, Sep 10 2020

A138565 Array read by rows: T(n,k) is the number of automorphisms of the k-th Abelian group of order n, where the ordering is such that the rows are nondecreasing.

Original entry on oeis.org

1, 1, 2, 2, 6, 4, 2, 6, 4, 8, 168, 6, 48, 4, 10, 4, 12, 12, 6, 8, 8, 16, 96, 192, 20160, 16, 6, 48, 18, 8, 24, 12, 10, 22, 8, 16, 336, 20, 480, 12, 18, 108, 11232, 12, 36, 28, 8, 30, 16, 32, 128, 384, 1536, 21504, 9999360, 20, 16, 24, 12, 36, 96, 288, 36, 18, 24, 16, 32, 672
Offset: 1

Views

Author

Benoit Jubin, May 12 2008

Keywords

Comments

This is a subtable of A137316.
The length of the n-th row is A000688(n).
The largest value of the n-th row is A061350(n).
The number phi(n) = A000010(n) appears in the n-th row.
The number A064767(n) appears in the (n^3)-th row.
The number A062771(n) appears in the (2n)-th row.

Examples

			The table begins as follows:
1
1
2
2 6
4
2
6
4 8 168
6 48
4
10
4 12
The first row with two numbers corresponds to the two Abelian groups of order 4, the cyclic group C_4 and the Klein group C_2 x C_2, whose automorphism groups are respectively the group (C_4)^x = C_2 and the symmetric group S_3.
		

Programs

  • GAP
    Print("\n") ;
    for o in [ 1 .. 40 ] do
        n := NumberSmallGroups(o) ;
        og := [] ;
        for i in [1 .. n] do
            g := SmallGroup(o,i) ;
            if IsAbelian(g) then
                H := AutomorphismGroup(g) ;
                ho := Order(H) ;
                Add(og,ho) ;
            fi ;
        od;
        Sort(og) ;
        Print(og) ;
        Print("\n") ;
    od; # R. J. Mathar, Jul 13 2013
Previous Showing 11-13 of 13 results.