cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A383295 Positions of proper prime powers (A246547) in EKG-sequence.

Original entry on oeis.org

3, 6, 8, 17, 22, 24, 31, 50, 64, 76, 112, 122, 124, 171, 232, 240, 290, 319, 359, 485, 521, 595, 696, 823, 947, 982, 1279, 1313, 1642, 1810, 1961, 2090, 2096, 2168, 2306, 2736, 3002, 3398, 3638, 3932, 4379, 4733, 4913, 5207, 6072, 6312, 6583, 6710, 7717, 7898, 9165, 9929, 10298, 11144, 11568, 11786, 12430, 14138
Offset: 1

Views

Author

Antti Karttunen, Apr 22 2025

Keywords

Comments

Apparently also numbers k for which A265576(k) > 1 and A064413(k) is neither 2 nor 2*odd prime.

Crossrefs

Setwise difference A383294 \ A064955.
Conjectured to be a subsequence of A383285.

Programs

  • PARI
    isA383295(n) = { my(x=A064413(n)); (isprimepower(x) && !isprime(x)); };

A064425 Gaps between where primes occur in A064413.

Original entry on oeis.org

3, 5, 4, 6, 8, 5, 4, 6, 14, 4, 6, 7, 7, 8, 11, 7, 8, 13, 6, 4, 13, 9, 7, 15, 7, 8, 6, 4, 9, 20, 17, 6, 5, 15, 8, 10, 8, 9, 14, 8, 8, 19, 8, 6, 4, 20, 19, 10, 8, 6, 14, 4, 12, 13, 14, 9, 7, 13, 10, 9, 8, 24, 6, 12, 7, 23, 10, 16, 9, 6, 11, 18, 8, 17, 6, 6, 20, 10, 15
Offset: 1

Views

Author

N. J. A. Sloane, Oct 01 2001

Keywords

Crossrefs

Cf. A064413. First differences of A064955 and also of A064423.
Cf. A137847.

Programs

  • Mathematica
    terms = 80;
    ekg[s_] := Block[{m = s[[-1]], k = 3}, While[MemberQ[s, k] || GCD[m, k] == 1, k++]; Append[s, k]];
    EKG = Nest[ekg, {2, 4}, 12 terms];
    fp[n_] := FirstPosition[EKG, Prime[n]][[1]];
    Array[fp, terms] // Differences (* Jean-François Alcover, Sep 02 2018, after Robert G. Wilson v in A064413 *)

A305293 Prime shift towards larger primes, conjugated by the EKG-permutation: a(n) = A064664(A003961(A064413(n))).

Original entry on oeis.org

1, 5, 6, 11, 10, 24, 39, 22, 15, 14, 25, 69, 21, 20, 53, 130, 76, 51, 29, 28, 54, 112, 97, 50, 78, 96, 34, 33, 84, 209, 232, 38, 37, 85, 153, 44, 43, 111, 156, 179, 109, 58, 57, 142, 383, 140, 148, 352, 281, 124, 249, 299, 93, 118, 218, 62, 61, 143, 172, 68, 67, 173, 641, 696, 162, 75, 74, 210, 227, 238, 191, 535, 82, 81
Offset: 1

Views

Author

Antti Karttunen, May 31 2018

Keywords

Comments

Permutation of A064957.

Crossrefs

Cf. A305294 (a left inverse).

Formula

a(n) = A064664(A003961(A064413(n))).
Other identities. For all n >= 1:
A305294(a(n)) = n.
a(A064955(n)) = A064955(1+n).
For all n >= 2, a(A064423(n)) = 1+A064955(1+n).

A382222 Smallest k such that A073734(k) = n, where A073734 is the GCD of consecutive terms of the EKG sequence A064413.

Original entry on oeis.org

2, 3, 5, 8, 10, 968, 14, 17, 149, 579, 20, 11068, 28, 2126, 2406, 3070, 33, 58836, 37, 2935, 7468, 20029, 43, 50835, 321, 1065, 2220, 60390, 57, 403831, 61, 20143, 29156, 13453, 32294, 18829, 67, 2117, 56683, 65867, 74, 10242, 81, 82455, 80410, 24112, 89, 868283, 41341, 36370
Offset: 1

Views

Author

Scott R. Shannon, Mar 19 2025

Keywords

Comments

a(630) > 1.045*10^9.

Examples

			a(6) = 968 as A064413(968) = 1014, A064413(967) = 1032, and GCD(1014,1032) = 6. No earlier pair of consecutive terms in A064413 has a GCD of 6.
		

Crossrefs

Formula

If n = prime(j), j>=2, then a(n) = A064955(j).

A383294 Positions of prime powers (A246655) in EKG-sequence.

Original entry on oeis.org

2, 3, 5, 6, 8, 10, 14, 17, 20, 22, 24, 28, 31, 33, 37, 43, 50, 57, 61, 64, 67, 74, 76, 81, 89, 100, 107, 112, 115, 122, 124, 128, 134, 138, 151, 160, 167, 171, 182, 189, 197, 203, 207, 216, 232, 236, 240, 253, 259, 264, 279, 287, 290, 297, 305, 314, 319, 328, 336, 344, 359, 363, 371, 377, 381, 401, 420, 430, 438, 444
Offset: 1

Views

Author

Antti Karttunen, Apr 22 2025

Keywords

Crossrefs

Positions of terms > 1 in A383293.
Disjoint union of A064955 and A383295.

Programs

  • PARI
    isA383294(n) = { my(x=A064413(n)); (isprime(x) || isprimepower(x)); };

A305294 Prime shift towards smaller primes, conjugated by the EKG-permutation: a(n) = A064664(A064989(A064413(n))).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 2, 1, 5, 5, 4, 3, 10, 10, 9, 2, 1, 5, 14, 14, 13, 8, 4, 6, 11, 10, 20, 20, 19, 3, 1, 28, 28, 27, 9, 33, 33, 32, 7, 5, 14, 37, 37, 36, 2, 6, 20, 8, 10, 24, 18, 4, 15, 21, 11, 43, 43, 42, 13, 57, 57, 56, 3, 1, 28, 61, 61, 60, 12, 19, 33, 5, 67, 67, 66, 17, 9, 25, 14, 74, 74, 73, 7, 29, 34, 6, 37, 81, 81, 80, 2
Offset: 1

Views

Author

Antti Karttunen, May 31 2018

Keywords

Crossrefs

Formula

a(n) = A064664(A064989(A064413(n))).
For all n >= 1, a(A305293(n)) = n.
For all n >= 2, a(A064423(n)) = a(A064955(n)) = A064955(n-1).
For all n >= 3, a(1+A064955(n)) = A064423(n-1).

A352194 It seems that the n-th prime p appears in A064413 at around position 2*p; if in fact A064413(w) = p then set a(n) = 2*p-w.

Original entry on oeis.org

2, 1, 0, 0, 2, -2, 1, 1, 3, 1, 1, 7, 8, 5, 5, 6, 11, 7, 6, 8, 8, 7, 6, 11, 12, 13, 9, 11, 11, 10, 18, 9, 15, 14, 19, 15, 17, 21, 20, 18, 22, 18, 19, 15, 17, 17, 21, 26, 24, 20, 22, 20, 20, 28, 27, 25, 28, 25, 24, 22, 17, 29, 33, 35, 27, 28, 33, 35, 39, 34, 36, 37, 35, 39, 34, 36, 42, 38, 36, 37, 40, 40, 48, 47, 45, 38, 41, 40
Offset: 1

Views

Author

N. J. A. Sloane, Mar 13 2022

Keywords

Comments

This is the amount by which p appears in advance of its expected position.

Crossrefs

Formula

a(n) = 2*A008578(n) - A064955(n-1).

A348470 a(n) = lpf(EKG(n)) = A020639(A064413(n)).

Original entry on oeis.org

1, 2, 2, 2, 3, 3, 2, 2, 2, 5, 3, 2, 2, 7, 3, 2, 2, 2, 2, 11, 3, 3, 2, 5, 5, 2, 2, 13, 3, 2, 2, 2, 17, 3, 2, 2, 19, 3, 3, 2, 2, 2, 23, 3, 2, 2, 2, 2, 2, 7, 3, 2, 5, 5, 2, 2, 29, 3, 2, 2, 31, 3, 2, 2, 2, 2, 37, 3, 3, 2, 2, 2, 2, 41, 3, 3, 2, 7, 2, 2, 43, 3, 2, 5
Offset: 1

Views

Author

Michael De Vlieger, Dec 06 2021

Keywords

Comments

Prime p_n appears first at a(A064955(n)).
Records are A008578.

Crossrefs

Programs

  • Mathematica
    Map[FactorInteger[#][[1, 1]] &, Nest[Block[{k = 3}, While[Or[MemberQ[#, k], GCD[#[[-1]], k] == 1], k++]; Append[#, k]] &, {1, 2}, 84]]
    (* or, faster *)
    s = {1, 2}; u = 3; c[_] = 0; Set[j, 2]; Array[Set[c[#], #] &, 2]; Range[2]~Join~Reap[Do[If[PrimeQ[j], Set[u, NextPrime[u]]]; Set[k, u]; Which[And[PrimeQ[j], OddQ[j]], Set[k, 3 j], And[PrimeQ[j/2], OddQ[j/2]], Set[k, j/2], True, While[Nand[c[k] == 0, GCD[j, k] > 1], k++]]; Sow[FactorInteger[k][[1, 1]] ]; Set[c[k], i]; j = k, {i, 4, 10^4}]][[-1, -1]]
  • Python
    from itertools import islice, count
    from math import gcd
    from sympy import primefactors
    def A064413gen(): # generator of terms
        yield 1
        yield 2
        l, s, b = 2, 3, set()
        for _ in count(0):
            i = s
            while True:
                if not i in b and gcd(i,l) > 1:
                    yield i
                    l = i
                    b.add(i)
                    while s in b:
                        b.remove(s)
                        s += 1
                    break
                i += 1
    def A348470(n): return 1 if n == 1 else min(primefactors(next(islice(A064413gen(),n-1,None)))) # Chai Wah Wu, Dec 07 2021

A140418 Position of cubes in the EKG sequence (A064413).

Original entry on oeis.org

1, 8, 22, 64, 112, 199, 319, 485, 696, 958, 1279, 1649, 2090, 2612, 3241, 3932, 4733, 5608, 6583, 7707, 8926
Offset: 1

Views

Author

Parthasarathy Nambi, Jun 17 2008

Keywords

Comments

The squares (A139476), primes (A064955) and cubes (this sequence) all appear in increasing order. Is this true for all other powers also?

Examples

			The position of 3^3 is 22.
The position of 5^3 is 112.
		

Crossrefs

Previous Showing 11-19 of 19 results.