cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A365211 The sum of divisors d of n such that gcd(d, n/d) is a 5-rough number (A007310).

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 9, 10, 18, 12, 20, 14, 24, 24, 17, 18, 30, 20, 30, 32, 36, 24, 36, 31, 42, 28, 40, 30, 72, 32, 33, 48, 54, 48, 50, 38, 60, 56, 54, 42, 96, 44, 60, 60, 72, 48, 68, 57, 93, 72, 70, 54, 84, 72, 72, 80, 90, 60, 120, 62, 96, 80, 65, 84, 144, 68
Offset: 1

Views

Author

Amiram Eldar, Aug 26 2023

Keywords

Comments

First differs from A034448 at n = 25.
The number of these divisors is A365210(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p <= 3 , 1 + p^e, (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] <= 3, 1 + f[i,1]^f[i,2], (f[i,1]^(f[i,2]+1)-1)/(f[i,1]-1)));}

Formula

Multiplicative with a(p^e) = 1 + p^e for p = 2 and 3, and a(p^e) = (p^(e+1)-1)/(p-1) for a prime p >= 5.
a(n) <= A000203(n), with equality if and only if n is neither divisible by 4 nor by 9.
a(n) >= A034448(n), with equality if and only if n is not divisible by a square of a prime >= 5.
a(n) = A000203(A065330(n)) * A034448(A065331(n)).
Dirichlet g.f.: (1 - 1/2^(2*s-1)) * (1 - 1/3^(2*s-1)) * zeta(s)*zeta(s-1).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 91*Pi^2/1296 = 0.69300463... .

A385007 The largest unitary divisor of n that is a biquadratefree number (A046100).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 3, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69
Offset: 1

Views

Author

Amiram Eldar, Jun 15 2025

Keywords

Comments

First differs from A053165 at n = 32 = 2^5: a(32) = 1 while A053165(32) = 2.
First differs from A383764 at n = 32 = 2^5: a(32) = 1 while A383764(32) = 32.
Equivalently, a(n) is the least divisor d of n such that n/d is a 4-full number (A036967).

Crossrefs

The largest unitary divisor of n that is: A000265 (odd), A006519 (power of 2), A055231 (squarefree), A057521 (powerful), A065330 (5-rough), A065331 (3-smooth), A350388 (square), A350389 (exponentially odd), A360539 (cubefree), A360540 (cubefull), A366126 (cube), A367168 (exponentially 2^n), this sequence (biquadratefree).

Programs

  • Mathematica
    f[p_, e_] := If[e < 4, p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] < 4, f[i, 1]^f[i, 2], 1)); }

Formula

a(n) = 1 if and only if n is a 4-full number (A036967).
a(n) = n if and only if n is a biquadratefree number (A046100).
Multiplicative with a(p^e) = p^e if e <= 3, and 1 otherwise.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + p^(1-s) - p^(-s) + p^(2-2*s) - p^(1-2*s) - p^(2-3*s) + p^(3-3*s) - p^(3-4*s) + p^(-4*s)).
Sum_{k=1..n} a(k) ~ c * zeta(2) * n^2 / 2, where c = Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^6 + 1/p^8 - 1/p^9) = 0.56331392082909224894... .

A081320 Largest 3-smooth divisor of n-th Fibonacci number.

Original entry on oeis.org

1, 1, 2, 3, 1, 8, 1, 3, 2, 1, 1, 144, 1, 1, 2, 3, 1, 8, 1, 3, 2, 1, 1, 288, 1, 1, 2, 3, 1, 8, 1, 3, 2, 1, 1, 432, 1, 1, 2, 3, 1, 8, 1, 3, 2, 1, 1, 576, 1, 1, 2, 3, 1, 8, 1, 3, 2, 1, 1, 144, 1, 1, 2, 3, 1, 8, 1, 3, 2, 1, 1, 864, 1, 1, 2, 3, 1, 8, 1, 3, 2, 1, 1, 144, 1, 1, 2, 3, 1, 8, 1, 3, 2, 1, 1, 1152, 1
Offset: 1

Views

Author

Reinhard Zumkeller, May 20 2003

Keywords

Comments

Conjecture: for n>12 and n>0 modulo 12: a(n)=a(n-12) and a(12*k)=A065331(k)*144.
The first part of the conjecture follows from the fact that the Fibonacci numbers are a strong divisibility sequence. - Charles R Greathouse IV, Sep 24 2012

Examples

			Fibonacci(36) = 14930352 = 2^4 * 3^3 * 17 * 19 * 107, therefore a(36) = 2^4 * 3^3 = 432.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ ({2, 3}^IntegerExponent[Fibonacci[n], {2, 3}]);
    Table[a[n], {n, 1, 1000}] (* Jean-François Alcover, Oct 15 2021 *)
  • PARI
    fibord(n,p)=if(n==0, return(oo)); my(u=3,t); while((t=((Mod([1,1;1,0],p^u))^n)[1,2])==0, u*=2); valuation(t,p)
    a(n)=if(n%12, return(gcd(fibonacci(n%12),24))); 3^fibord(n,3)<Charles R Greathouse IV, Nov 13 2015

Formula

a(n) = A065331(A000045(n)).

A179276 Largest 3-smooth number <= n.

Original entry on oeis.org

1, 2, 3, 4, 4, 6, 6, 8, 9, 9, 9, 12, 12, 12, 12, 16, 16, 18, 18, 18, 18, 18, 18, 24, 24, 24, 27, 27, 27, 27, 27, 32, 32, 32, 32, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 48, 48, 48, 48, 48, 48, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 64, 64, 64, 64, 64, 64, 64, 64, 72, 72
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 07 2010

Keywords

Crossrefs

Programs

  • Mathematica
    smooth3Q[n_] := FactorInteger[n][[-1, 1]] <= 3;
    a[n_] := For[k = n, True, k--, If[smooth3Q[k], Return[k]]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 14 2021 *)

Formula

A065333(a(n)) = 1;
a(A003586(n)) = A003586(n);
A065331(n) <= a(n).
a(n) = A003586(A071521(n)). - Ridouane Oudra, Aug 24 2025

Extensions

Definition corrected by Georg Fischer, Aug 05 2021

A305720 Square array T(n, k) read by antidiagonals, n > 0 and k > 0; for any prime number p, the p-adic valuation of T(n, k) is the product of the p-adic valuations of n and of k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 4, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 16, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 8, 1, 4, 5, 4, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 9, 64, 1, 6, 1, 64, 9, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 4, 1, 8, 7, 8
Offset: 1

Views

Author

Rémy Sigrist, Jun 09 2018

Keywords

Comments

The array T is completely multiplicative in both parameters.
For any n > 0 and prime number p, T(n, p) is the highest power of p dividing n.
For any function f associating a nonnegative value to any pair of nonnegative values and such that f(0, 0) = 0, we can build an analog of this sequence, say P_f, such that for any prime number p and any n and k > 0 with p-adic valuations i and j, the p-adic valuation of P_f(n, k) equals f(i, j):
f(i, j) P_f
------- ---
i * j T (this sequence)
i + j A003991 (product)
abs(i-j) A089913
min(i, j) A003989 (GCD)
max(i, j) A003990 (LCM)
i AND j A059895
i OR j A059896
i XOR j A059897
If log(N) denotes the set {log(n) : n is in N, the set of the positive integers}, one can define a binary operation on log(N): with prime factorizations n = Product p_i^e_i and k = Product p_i^f_i, set log(n) o log(k) = Sum_{i} (e_i*f_i) * log(p_i). o has the premises of a scalar product even if log(N) isn't a vector space. T(n, k) can be viewed as exp(log(n) o log(k)). - Luc Rousseau, Oct 11 2020

Examples

			Array T(n, k) begins:
  n\k|    1    2    3    4    5    6    7    8    9   10
  ---+--------------------------------------------------
    1|    1    1    1    1    1    1    1    1    1    1
    2|    1    2    1    4    1    2    1    8    1    2  -> A006519
    3|    1    1    3    1    1    3    1    1    9    1  -> A038500
    4|    1    4    1   16    1    4    1   64    1    4
    5|    1    1    1    1    5    1    1    1    1    5  -> A060904
    6|    1    2    3    4    1    6    1    8    9    2  -> A065331
    7|    1    1    1    1    1    1    7    1    1    1  -> A268354
    8|    1    8    1   64    1    8    1  512    1    8
    9|    1    1    9    1    1    9    1    1   81    1
   10|    1    2    1    4    5    2    1    8    1   10  -> A132741
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := With[{p = FactorInteger[GCD[n, k]][[All, 1]]}, If[p == {1}, 1, Times @@ (p^(IntegerExponent[n, p] * IntegerExponent[k, p]))]];
    Table[T[n-k+1, k], {n, 1, 15}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 11 2018 *)
  • PARI
    T(n, k) = my (p=factor(gcd(n, k))[,1]); prod(i=1, #p, p[i]^(valuation(n, p[i]) * valuation(k, p[i])))

Formula

T(n, k) = T(k, n) (T is commutative).
T(m, T(n, k)) = T(T(m, n), k) (T is associative).
T(n, k) = 1 iff gcd(n, k) = 1.
T(n, n) = A054496(n).
T(n, A007947(n)) = n.
T(n, 1) = 1.
T(n, 2) = A006519(n).
T(n, 3) = A038500(n).
T(n, 4) = A006519(n)^2.
T(n, 5) = A060904(n).
T(n, 6) = A065331(n).
T(n, 7) = A268354(n).
T(n, 8) = A006519(n)^3.
T(n, 9) = A038500(n)^2.
T(n, 10) = A132741(n).
T(n, 11) = A268357(n).

A382490 The number of infinitary 3-smooth divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 1, 4, 1, 4, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 8, 1, 2, 4, 2, 1, 4, 1, 4, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 8, 1, 4, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 2, 2, 2, 1, 8, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2025

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^(DigitCount[IntegerExponent[n, 2], 2, 1] + DigitCount[IntegerExponent[n, 3], 2, 1]); Array[a, 100]
  • PARI
    a(n) = 1 << (hammingweight(valuation(n, 2)) + hammingweight(valuation(n, 3)));

Formula

Multiplicative with a(p^e) = 2^A000120(e) of p <= 3, and 1 otherwise.
a(n) = 2^(A000120(A007814(n)) + A000120(A007949(n))).
a(n) = A037445(A065331(n)).
a(n) = A037445(n) if and only if n is 3-smooth (A003586).
a(n) = A382488(n) if and only if n is an exponentially 2^n number (A138302).
a(n) = A072078(n) if and only if n is a product of a 5-rough number (A007310) and a 3-smooth number whose number of divisors is a power of 2 (i.e., in both A003586 and A036537).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (1/3) * Product_{k>=0} (1+1/2^(2^k-1))*(1+2/3^(2^k)) = 2.36739050930467832207... .
Previous Showing 31-36 of 36 results.