cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A306481 Lychrel numbers k that set a new record for the number of 'Reverse and Add' steps in base 2 needed to reach a Lychrel number m < k (i.e., its seed).

Original entry on oeis.org

22, 26, 67, 106, 157, 199, 281, 1145, 1594, 1798, 4326, 12794, 17407, 18428, 67583, 69628, 73978
Offset: 1

Views

Author

A.H.M. Smeets, Feb 18 2019

Keywords

Comments

Records in A306482.
Similar to the number of steps needed to reach a palindrome in the Reverse and Add! trajectories (see A066144 and A066145), the number of steps needed for a Lychrel number to reach the trajectory of its seed is relatively small.
Lychrel numbers in A066059; seeds in A075252 (for base 2).
As a clarification, this sequence can also be described as: Base 2 Lychrel numbers (A066059) k that sets a new record for the number of 'Reverse and Add' steps in base 2 needed to reach the trajectory of a base 2 Lychrel number seed (A075252) that is less than k. - Robert Price, Nov 20 2019

Crossrefs

Programs

  • Mathematica
    limit = 200; (* Assumes that there is no palindrome if none is found before "limit" iterations *)
    A066059 = Select[Range[50000],
       Length@NestWhileList[# + IntegerReverse[#, 2] &, #, # !=
             IntegerReverse[#, 2] &, 1, limit] == limit + 1 &];
    utraj = {};
    A075252 = Select[Range[50000],
       (x = NestWhileList[# + IntegerReverse[#, 2] &, #, # !=
             IntegerReverse[#, 2] & , 1, limit];
         If[Length@x >= limit  && Intersection[x, utraj] == {},
          utraj = Union[utraj, x]; True,
          utraj = Union[utraj, x]]) &];
    A306481 = {}; best = -1; lastj = 0;
    utraj = {};
    For[i = 1, i <= Length@A066059, i++,
    For[j = lastj + 1, j <= Length@A075252, j++,
      If[A066059[[i]] < A075252[[j]], Break[]];
      utraj = Union[utraj, NestList[# + IntegerReverse[#, 2] &, A075252[[j]], limit]];
      lastj = j; ];
    l = NestWhileList[# + IntegerReverse[#, 2] &,
       A066059[[i]], ! MemberQ[utraj, #] &, 1, limit];
    If[Length@l == limit + 1, Continue[]];
    If[Length@l > best, best = Length@l; AppendTo[A306481, A066059[[i]]]];
    ]; A306481 (* Robert Price, Nov 20 2019 *)

A306482 Records for the number of 'Reverse and Add' steps in base 2 needed for a Lychrel number to join the trajectory of a smaller Lychrel number (i.e., its seed). Record setting numbers in A306481.

Original entry on oeis.org

0, 4, 5, 6, 9, 11, 17, 21, 22, 34, 52, 68, 83, 84, 91, 92, 98
Offset: 1

Views

Author

A.H.M. Smeets, Feb 18 2019

Keywords

Comments

Record setting numbers in A306481.
Similar to the number of steps needed to reach a palindrome in the Reverse and Add! trajectories (see A066144 and A066145), the number of steps needed for a Lychrel number to reach the trajectory of its seed is relatively small.
Lychrel numbers in A066059; seeds in A075252 (for base 2).
As a clarification, this sequence can also be described as: "Records for the number of 'Reverse and Add' steps in base 2 needed for a base 2 Lychrel number (A066059) to join the trajectory of a smaller base 2 Lychrel number seed (A075252)." - Robert Price, Nov 20 2019

Crossrefs

Programs

  • Mathematica
    limit = 200; (* Assumes that there is no palindrome if none is found before "limit" iterations *)
    A066059 = Select[Range[50000],
       Length@NestWhileList[# + IntegerReverse[#, 2] &, #, # !=
             IntegerReverse[#, 2] &, 1, limit] == limit + 1 &];utraj = {};
    A075252 = Select[Range[50000],    (x = NestWhileList[# + IntegerReverse[#, 2] &, #, # !=
             IntegerReverse[#, 2] & , 1, limit];
         If[Length@x >= limit  && Intersection[x, utraj] == {},
          utraj = Union[utraj, x]; True,
          utraj = Union[utraj, x]]) &];A306482 = {}; best = -1; lastj = 0;
    utraj = {};
    For[i = 1, i <= Length@A066059, i++,
     For[j = lastj + 1, j <= Length@A075252, j++,
      If[A066059[[i]] < A075252[[j]], Break[]];
      utraj = Union[utraj, NestList[# + IntegerReverse[#, 2] &, A075252[[j]], limit]];
      lastj = j; ];
     l = NestWhileList[# + IntegerReverse[#, 2] &,
       A066059[[i]], ! MemberQ[utraj, #] &, 1, limit];
     If[Length@l == limit + 1, Continue[]];
    If[Length@l > best, best = Length@l; AppendTo[A306482, Length@l - 1]]; ]; A306482  (* Robert Price, Nov 20 2019 *)

A213012 Trajectory of 26 under the Reverse and Add! operation carried out in base 2.

Original entry on oeis.org

26, 37, 78, 135, 360, 405, 744, 837, 1488, 1581, 3024, 3213, 6048, 6237, 12192, 12573, 24384, 24765, 48960, 49725, 97920, 98685, 196224, 197757, 392448, 393981, 785664, 788733, 1571328, 1574397, 3144192, 3150333
Offset: 0

Views

Author

Ben Branman, Jun 01 2012

Keywords

Comments

26 is the second-smallest number (after 22) whose base 2 trajectory does not contain a palindrome.
lim_{n -> infinity} a(n)/a(n-1) = 2 for n mod 2 = 0.
lim_{n -> infinity} a(n)/a(n-1) = 1 for n mod 2 = 1. - Branman
In 2001, Brockhaus proved that if the binary Reverse and Add trajectory of an integer contains an integer of one of four specific given forms, then the trajectory never reaches a palindrome. In the case of 26, that would be 3(2^(2k + 1) - 2^k), with k = 3 corresponding to 360. - Alonso del Arte, Jun 02 2012

Examples

			In binary, 26 is 11010.
a(1) = 37 because 11010 + 01011 = 100101, or 37.
a(2) = 78 because 100101 + 101001 = 1001110, or 78.
		

Crossrefs

Programs

  • Mathematica
    binRA[n_] := If[Reverse[IntegerDigits[n, 2]] == IntegerDigits[n, 2], n, FromDigits[Reverse[IntegerDigits[n, 2]], 2] + n]; NestList[binRA, 26, 100]

A306365 Trajectory of n under the Reverse and Add! operation carried out in base 5 (presumably) does not reach a palindrome.

Original entry on oeis.org

708, 718, 723, 731, 733, 743, 828, 838, 843, 851, 853, 863, 958, 963, 983, 1078, 1083, 1103, 1203, 1299, 1309, 1332, 1342, 1347, 1350, 1355, 1357, 1359, 1367, 1419, 1429, 1452, 1462, 1467, 1475, 1477, 1479, 1487, 1499, 1539, 1582, 1607, 1619, 1659, 1702, 1707, 1727, 1739, 1779, 1827, 1859, 1923, 1933, 1956
Offset: 1

Views

Author

A.H.M. Smeets, Feb 10 2019

Keywords

Comments

Base-5 analog of A066059 (base 2), A077404 (base 3), A075420 (base 4) and A023108 (base 10).
All terms are tested up to 200 iteration steps, i.e., within 200 steps no palindrome was reached.

Crossrefs

Previous Showing 11-14 of 14 results.