cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 447 results. Next

A345910 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum -1.

Original entry on oeis.org

6, 20, 25, 27, 30, 72, 81, 83, 86, 92, 98, 101, 103, 106, 109, 111, 116, 121, 123, 126, 272, 289, 291, 294, 300, 312, 322, 325, 327, 330, 333, 335, 340, 345, 347, 350, 360, 369, 371, 374, 380, 388, 393, 395, 398, 402, 405, 407, 410, 413, 415, 420, 425, 427
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
      6: (1,2)
     20: (2,3)
     25: (1,3,1)
     27: (1,2,1,1)
     30: (1,1,1,2)
     72: (3,4)
     81: (2,4,1)
     83: (2,3,1,1)
     86: (2,2,1,2)
     92: (2,1,1,3)
     98: (1,4,2)
    101: (1,3,2,1)
    103: (1,3,1,1,1)
    106: (1,2,2,2)
    109: (1,2,1,2,1)
		

Crossrefs

These compositions are counted by A001791.
A version using runs of binary digits is A031444.
These are the positions of -1's in A124754.
The opposite (positive 1) version is A345909.
The reverse version is A345912.
The version for alternating sum of prime indices is A345959.
Standard compositions: A000120, A066099, A070939, A124754, A228351, A344618.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A000070 counts partitions of 2n+1 with alternating sum 1, ranked by A001105.
A011782 counts compositions.
A097805 counts compositions by sum and alternating sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A345197 counts compositions by sum, length, and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[stc[#]]==-1&]

A345912 Numbers k such that the k-th composition in standard order (row k of A066099) has reverse-alternating sum -1.

Original entry on oeis.org

5, 18, 23, 25, 29, 68, 75, 78, 81, 85, 90, 95, 98, 103, 105, 109, 114, 119, 121, 125, 264, 275, 278, 284, 289, 293, 298, 303, 308, 315, 318, 322, 327, 329, 333, 338, 343, 345, 349, 356, 363, 366, 369, 373, 378, 383, 388, 395, 398, 401, 405, 410, 415, 418, 423
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2021

Keywords

Comments

The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
      5: (2,1)
     18: (3,2)
     23: (2,1,1,1)
     25: (1,3,1)
     29: (1,1,2,1)
     68: (4,3)
     75: (3,2,1,1)
     78: (3,1,1,2)
     81: (2,4,1)
     85: (2,2,2,1)
     90: (2,1,2,2)
     95: (2,1,1,1,1,1)
     98: (1,4,2)
    103: (1,3,1,1,1)
    105: (1,2,3,1)
		

Crossrefs

These compositions are counted by A001791.
These are the positions of -1's in A344618.
The non-reverse version is A345910.
The opposite (positive 1) version is A345911.
The version for Heinz numbers of partitions is A345959.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating or reverse-alternating sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[0,100],sats[stc[#]]==-1&]

A345917 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum > 0.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 9, 11, 14, 16, 17, 18, 19, 21, 22, 23, 26, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 42, 44, 45, 47, 52, 56, 57, 59, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 84, 85, 87, 88, 89, 90, 91, 93, 94, 95, 100, 104, 105, 107
Offset: 1

Views

Author

Gus Wiseman, Jul 08 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms and the corresponding compositions:
     1: (1)
     2: (2)
     4: (3)
     5: (2,1)
     7: (1,1,1)
     8: (4)
     9: (3,1)
    11: (2,1,1)
    14: (1,1,2)
    16: (5)
    17: (4,1)
    18: (3,2)
    19: (3,1,1)
    21: (2,2,1)
    22: (2,1,2)
		

Crossrefs

The version for Heinz numbers of partitions is A026424.
These compositions are counted by A027306.
These are the positions of terms > 0 in A124754.
The weak (k >= 0) version is A345913.
The reverse-alternating version is A345918.
The opposite (k < 0) version is A345919.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[stc[#]]>0&]

A345911 Numbers k such that the k-th composition in standard order (row k of A066099) has reverse-alternating sum 1.

Original entry on oeis.org

1, 6, 7, 20, 21, 26, 27, 30, 31, 72, 73, 82, 83, 86, 87, 92, 93, 100, 101, 106, 107, 110, 111, 116, 117, 122, 123, 126, 127, 272, 273, 290, 291, 294, 295, 300, 301, 312, 313, 324, 325, 330, 331, 334, 335, 340, 341, 346, 347, 350, 351, 360, 361, 370, 371, 374
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2021

Keywords

Comments

The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
     1: (1)
     6: (1,2)
     7: (1,1,1)
    20: (2,3)
    21: (2,2,1)
    26: (1,2,2)
    27: (1,2,1,1)
    30: (1,1,1,2)
    31: (1,1,1,1,1)
    72: (3,4)
    73: (3,3,1)
    82: (2,3,2)
    83: (2,3,1,1)
    86: (2,2,1,2)
    87: (2,2,1,1,1)
		

Crossrefs

These compositions are counted by A000984 (bisection of A126869).
The version for Heinz numbers of partitions is A001105.
A version using runs of binary digits is A066879.
These are positions of 1's in A344618.
The non-reverse version is A345909.
The opposite (negative 1) version is A345912.
The version for prime indices is A345958.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating or reverse-alternating sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[0,100],sats[stc[#]]==1&]

A345913 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum >= 0.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 26, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82
Offset: 1

Views

Author

Gus Wiseman, Jul 04 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
     0: ()           17: (4,1)          37: (3,2,1)
     1: (1)          18: (3,2)          38: (3,1,2)
     2: (2)          19: (3,1,1)        39: (3,1,1,1)
     3: (1,1)        21: (2,2,1)        41: (2,3,1)
     4: (3)          22: (2,1,2)        42: (2,2,2)
     5: (2,1)        23: (2,1,1,1)      43: (2,2,1,1)
     7: (1,1,1)      26: (1,2,2)        44: (2,1,3)
     8: (4)          28: (1,1,3)        45: (2,1,2,1)
     9: (3,1)        29: (1,1,2,1)      46: (2,1,1,2)
    10: (2,2)        31: (1,1,1,1,1)    47: (2,1,1,1,1)
    11: (2,1,1)      32: (6)            50: (1,3,2)
    13: (1,2,1)      33: (5,1)          52: (1,2,3)
    14: (1,1,2)      34: (4,2)          53: (1,2,2,1)
    15: (1,1,1,1)    35: (4,1,1)        55: (1,2,1,1,1)
    16: (5)          36: (3,3)          56: (1,1,4)
		

Crossrefs

These compositions are counted by A116406.
These are the positions of terms >= 0 in A124754.
The version for prime indices is A344609.
The reverse-alternating sum version is A345914.
The opposite (k <= 0) version is A345915.
The strict (k > 0) version is A345917.
The complement is A345919.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[stc[#]]>=0&]

A374768 Numbers k such that the leaders of weakly increasing runs in the k-th composition in standard order (A066099) are distinct.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50, 52, 56, 58, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81
Offset: 1

Views

Author

Gus Wiseman, Jul 19 2024

Keywords

Comments

First differs from A335467 in having 166, corresponding to the composition (2,3,1,2).
The leaders of weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 4444th composition in standard order is (4,2,2,1,1,3), with weakly increasing runs ((4),(2,2),(1,1,3)), with leaders (4,2,1), so 4444 is in the sequence.
		

Crossrefs

These are the positions of strict rows in A374629 (which has sums A374630).
Compositions of this type are counted by A374632, increasing A374634.
Identical instead of distinct leaders are A374633, counted by A374631.
For leaders of anti-runs we have A374638, counted by A374518.
For leaders of strictly increasing runs we have A374698, counted by A374687.
For leaders of weakly decreasing runs we have A374701, counted by A374743.
For leaders of strictly decreasing runs we have A374767, counted by A374761.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Ones are counted by A000120.
- Sum is A029837 (or sometimes A070939).
- Parts are listed by A066099.
- Length is A070939.
- Adjacent equal pairs are counted by A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of strict compositions are A233564.
- Ranks of constant compositions are A272919.
- Ranks of anti-run compositions are A333489, counted by A003242.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,166],UnsameQ@@First/@Split[stc[#],LessEqual]&]

A345909 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum 1.

Original entry on oeis.org

1, 5, 7, 18, 21, 23, 26, 29, 31, 68, 73, 75, 78, 82, 85, 87, 90, 93, 95, 100, 105, 107, 110, 114, 117, 119, 122, 125, 127, 264, 273, 275, 278, 284, 290, 293, 295, 298, 301, 303, 308, 313, 315, 318, 324, 329, 331, 334, 338, 341, 343, 346, 349, 351, 356, 361
Offset: 1

Views

Author

Gus Wiseman, Jun 30 2021

Keywords

Comments

The alternating sum of a composition (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
      1: (1)             87: (2,2,1,1,1)
      5: (2,1)           90: (2,1,2,2)
      7: (1,1,1)         93: (2,1,1,2,1)
     18: (3,2)           95: (2,1,1,1,1,1)
     21: (2,2,1)        100: (1,3,3)
     23: (2,1,1,1)      105: (1,2,3,1)
     26: (1,2,2)        107: (1,2,2,1,1)
     29: (1,1,2,1)      110: (1,2,1,1,2)
     31: (1,1,1,1,1)    114: (1,1,3,2)
     68: (4,3)          117: (1,1,2,2,1)
     73: (3,3,1)        119: (1,1,2,1,1,1)
     75: (3,2,1,1)      122: (1,1,1,2,2)
     78: (3,1,1,2)      125: (1,1,1,1,2,1)
     82: (2,3,2)        127: (1,1,1,1,1,1,1)
     85: (2,2,2,1)      264: (5,4)
		

Crossrefs

These compositions are counted by A000984 (bisection of A126869).
The version for prime indices is A001105.
A version using runs of binary digits is A031448.
These are the positions of 1's in A124754.
The opposite (negative 1) version is A345910.
The reverse version is A345911.
The version for Heinz numbers of partitions is A345958.
Standard compositions: A000120, A066099, A070939, A124754, A228351, A344618.
A000070 counts partitions with alternating sum 1 (ranked by A345957).
A000097 counts partitions with alternating sum 2 (ranked by A345960).
A011782 counts compositions.
A097805 counts compositions by sum and alternating sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909 (this sequence)/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[stc[#]]==1&]

A334299 Number of distinct subsequences (not necessarily contiguous) of compositions in standard order (A066099).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 4, 4, 2, 4, 3, 6, 4, 7, 6, 5, 2, 4, 4, 6, 4, 6, 7, 8, 4, 7, 6, 10, 6, 10, 8, 6, 2, 4, 4, 6, 3, 8, 8, 8, 4, 8, 4, 9, 8, 12, 11, 10, 4, 7, 8, 10, 8, 11, 12, 13, 6, 10, 9, 14, 8, 13, 10, 7, 2, 4, 4, 6, 4, 8, 8, 8, 4, 6, 6, 12, 7, 14, 12, 10, 4
Offset: 0

Views

Author

Gus Wiseman, Jun 01 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Triangle begins:
  1
  2
  2 3
  2 4 4 4
  2 4 3 6 4 7 6 5
  2 4 4 6 4 6 7 8 4 7 6 10 6 10 8 6
If the k-th composition in standard order is c, then we say that the STC-number of c is k. The n-th column below lists the STC-numbers of the subsequences of the composition with STC-number n:
  0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15
     0  0  1  0  2  2  3  0  4   2   5   4   6   6   7
           0     1  1  1     1   0   3   1   5   3   3
                 0  0  0     0       2   0   3   2   1
                                     1       2   1   0
                                     0       1   0
                                             0
		

Crossrefs

Row lengths are A011782.
Looking only at contiguous subsequences gives A124771.
Compositions where every subinterval has a different sum are A333222.
Knapsack compositions are A333223.
Contiguous positive subsequence-sums are counted by A333224.
Contiguous subsequence-sums are counted by A333257.
Disallowing empty subsequences gives A334300.
Subsequence-sums are counted by A334968.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[Subsets[stc[n]]]],{n,0,100}]

Formula

a(n) = A334300(n) + 1.

A345919 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum < 0.

Original entry on oeis.org

6, 12, 20, 24, 25, 27, 30, 40, 48, 49, 51, 54, 60, 72, 80, 81, 83, 86, 92, 96, 97, 98, 99, 101, 102, 103, 106, 108, 109, 111, 116, 120, 121, 123, 126, 144, 160, 161, 163, 166, 172, 184, 192, 193, 194, 195, 197, 198, 199, 202, 204, 205, 207, 212, 216, 217, 219
Offset: 1

Views

Author

Gus Wiseman, Jul 09 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms and the corresponding compositions:
      6: (1,2)         81: (2,4,1)
     12: (1,3)         83: (2,3,1,1)
     20: (2,3)         86: (2,2,1,2)
     24: (1,4)         92: (2,1,1,3)
     25: (1,3,1)       96: (1,6)
     27: (1,2,1,1)     97: (1,5,1)
     30: (1,1,1,2)     98: (1,4,2)
     40: (2,4)         99: (1,4,1,1)
     48: (1,5)        101: (1,3,2,1)
     49: (1,4,1)      102: (1,3,1,2)
     51: (1,3,1,1)    103: (1,3,1,1,1)
     54: (1,2,1,2)    106: (1,2,2,2)
     60: (1,1,1,3)    108: (1,2,1,3)
     72: (3,4)        109: (1,2,1,2,1)
     80: (2,5)        111: (1,2,1,1,1,1)
		

Crossrefs

The version for Heinz numbers of partitions is A119899.
These are the positions of terms < 0 in A124754.
These compositions are counted by A294175 (even bisection: A008549).
The complement is A345913.
The weak (k <= 0) version is A345915.
The opposite (k < 0) version is A345917.
The version for reversed alternating sum is A345920.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A236913 counts partitions of 2n with reverse-alternating sum <= 0.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[stc[#]]<0&]

A345922 Numbers k such that the k-th composition in standard order (row k of A066099) has reverse-alternating sum 2.

Original entry on oeis.org

2, 11, 12, 14, 37, 40, 42, 47, 51, 52, 54, 59, 60, 62, 137, 144, 146, 151, 157, 163, 164, 166, 171, 172, 174, 181, 184, 186, 191, 197, 200, 202, 207, 211, 212, 214, 219, 220, 222, 229, 232, 234, 239, 243, 244, 246, 251, 252, 254, 529, 544, 546, 551, 557, 569
Offset: 1

Views

Author

Gus Wiseman, Jul 10 2021

Keywords

Comments

The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms and the corresponding compositions:
      2: (2)            144: (3,5)
     11: (2,1,1)        146: (3,3,2)
     12: (1,3)          151: (3,2,1,1,1)
     14: (1,1,2)        157: (3,1,1,2,1)
     37: (3,2,1)        163: (2,4,1,1)
     40: (2,4)          164: (2,3,3)
     42: (2,2,2)        166: (2,3,1,2)
     47: (2,1,1,1,1)    171: (2,2,2,1,1)
     51: (1,3,1,1)      172: (2,2,1,3)
     52: (1,2,3)        174: (2,2,1,1,2)
     54: (1,2,1,2)      181: (2,1,2,2,1)
     59: (1,1,2,1,1)    184: (2,1,1,4)
     60: (1,1,1,3)      186: (2,1,1,2,2)
     62: (1,1,1,1,2)    191: (2,1,1,1,1,1,1)
    137: (4,3,1)        197: (1,4,2,1)
		

Crossrefs

These compositions are counted by A088218.
The case of partitions is counted by A120452.
These are the positions of 2's in A344618.
The opposite (negative 2) version is A345923.
The version for unreversed alternating sum is A345925.
The version for Heinz numbers of partitions is A345961.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[0,100],sats[stc[#]]==2&]
Previous Showing 11-20 of 447 results. Next