cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A338020 a(n) is the number of circles of positive integer area with radii less than n and greater than n - 1.

Original entry on oeis.org

3, 9, 16, 22, 28, 35, 40, 48, 53, 60, 66, 72, 78, 85, 91, 98, 103, 110, 117, 122, 129, 135, 141, 148, 154, 160, 167, 173, 179, 185, 192, 197, 205, 210, 217, 223, 229, 236, 242, 248, 255, 260, 267, 274, 279, 286, 292, 299, 304, 311, 318, 323, 330, 336, 343, 349, 355, 361, 367
Offset: 1

Views

Author

Torlach Rush, Oct 06 2020

Keywords

Comments

Conjecture: k >= 2, each triple Tr(k) = {a(k), a(k+1), a(k+2)} gives the sides of an integer-sided triangle, and {(a(k+2) - a(k)), (a(k+2) - a(k+1)), (a(k+1) - a(k))} is a degenerate integer-sided triangle.

Crossrefs

Cf. A066643 (partial sums).

Programs

  • PARI
    ap(n) = {my(x = 0, y = 1, ia = 1); while(y, if(n > sqrt(ia / Pi), x++; ia++, y = 0)); return(x)}
    a(n) = {my(x = 0, y = 1, ia = 1); while(y, if(n > sqrt(ia / Pi), x++; ia++, y = 0)); return(x - ap(n-1))}
    for(i = 1, 70, print1(a(i), ", "))

Formula

a(n) = #{floor(sqrt(k/Pi)) < n: n > 0, k > 0}.
a(n) = A066643(n)-A066643(n-1). - R. J. Mathar, Jan 25 2023

A235532 a(n) = floor(n^2 * (4-Pi)).

Original entry on oeis.org

0, 0, 3, 7, 13, 21, 30, 42, 54, 69, 85, 103, 123, 145, 168, 193, 219, 248, 278, 309, 343, 378, 415, 454, 494, 536, 580, 625, 672, 721, 772, 824, 879, 934, 992, 1051, 1112, 1175, 1239, 1305, 1373, 1442, 1514, 1587, 1661, 1738, 1816, 1896, 1977, 2061, 2146, 2232, 2321
Offset: 0

Views

Author

Alex Ratushnyak, Jan 11 2014

Keywords

Comments

a(n) = floor(As(n) - Ac(n)), where Ac(n) is the area of the circle of radius n, and As(n) is the area of square with side length 2n.

Crossrefs

Programs

  • Mathematica
    Floor[(4-Pi)#^2]&/@Range[0,60] (* Harvey P. Dale, Jan 10 2020 *)
  • Python
    import math
    for n in range(77): print(str(int(n*n*(4-math.pi))), end=',')
Previous Showing 11-12 of 12 results.