cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A302576 Numbers k such that k/10 + 1 is a square.

Original entry on oeis.org

-10, 0, 30, 80, 150, 240, 350, 480, 630, 800, 990, 1200, 1430, 1680, 1950, 2240, 2550, 2880, 3230, 3600, 3990, 4400, 4830, 5280, 5750, 6240, 6750, 7280, 7830, 8400, 8990, 9600, 10230, 10880, 11550, 12240, 12950, 13680, 14430, 15200, 15990, 16800, 17630, 18480, 19350, 20240
Offset: 1

Views

Author

Bruno Berselli, Apr 10 2018

Keywords

Comments

Equivalently, numbers k such that (k + 10)*10 is a square.
The positive terms belong to the fourth column of the array in A185781.

Crossrefs

After -10, subsequence of A174133 because a(n) = ((n-1)^2-1)*(3^2+1).
Similar lists of k for which k/j + 1 is a square: A067998 (j=1), A054000 (j=2), A067725 (j=3), A134582 (j=4), A067724 (j=5), A067726 (j=6), A067727 (j=7), second bisection of A067728 (j=8), A147651 (j=9), this sequence (j=10), A067705 (j=11), second bisection of A067707 (j=12).

Programs

  • GAP
    List([1..50], n -> 10*n*(n-2));
    
  • Julia
    [10*n*(n-2) for n in 1:50] |> println
    
  • Magma
    [10*n*(n-2): n in [1..50]];
  • Mathematica
    Table[10 n (n - 2), {n, 1, 50}]
  • Maxima
    makelist(10*n*(n-2), n, 1, 50);
    
  • PARI
    vector(50, n, nn; 10*n*(n-2))
    
  • Python
    [10*n*(n-2) for n in range(1, 50)]
    
  • Sage
    [10*n*(n-2) for n in (1..50)]
    

Formula

O.g.f.: -10*x*(1 - 3*x)/(1 - x)^3.
E.g.f.: -10*x*(1 - x)*exp(x).
a(n) = a(2-n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 10*n*(n - 2) = 10*A067998(n).
a(n) = A033583(n-1) - 10. - Altug Alkan, Apr 10 2018

A361521 Array read by descending antidiagonals. A(n, k) is the number of the nonempty multiset combinations of {0, 1} as defined in A361682.

Original entry on oeis.org

0, 0, 0, 0, 2, 0, 0, 5, 4, 0, 0, 9, 12, 6, 0, 0, 14, 24, 21, 8, 0, 0, 20, 40, 45, 32, 10, 0, 0, 27, 60, 78, 72, 45, 12, 0, 0, 35, 84, 120, 128, 105, 60, 14, 0, 0, 44, 112, 171, 200, 190, 144, 77, 16, 0, 0, 54, 144, 231, 288, 300, 264, 189, 96, 18, 0
Offset: 0

Views

Author

Peter Luschny, Mar 22 2023

Keywords

Comments

A detailed combinatorial interpretation can be found in A361682.

Examples

			[0] 0,  0,  0,   0,   0,   0,   0,    0, ...  A000004
[1] 0,  2,  5,   9,  14,  20,  27,   35, ...  A000096
[2] 0,  4, 12,  24,  40,  60,  84,  112, ...  A046092
[3] 0,  6, 21,  45,  78, 120, 171,  231, ...  A081266
[4] 0,  8, 32,  72, 128, 200, 288,  392, ...  A139098
[5] 0, 10, 45, 105, 190, 300, 435,  595, ...
[6] 0, 12, 60, 144, 264, 420, 612,  840, ...  A153792
[7] 0, 14, 77, 189, 350, 560, 819, 1127, ...
       | A028347 |     A163761
     A005843  A067725
.
[0] 0;
[1] 0,  0;
[2] 0,  2,   0;
[3] 0,  5,   4,   0;
[4] 0,  9,  12,   6,   0;
[5] 0, 14,  24,  21,   8,   0;
[6] 0, 20,  40,  45,  32,  10,   0;
[7] 0, 27,  60,  78,  72,  45,  12,  0;
[8] 0, 35,  84, 120, 128, 105,  60, 14,  0;
[9] 0, 44, 112, 171, 200, 190, 144, 77, 16, 0;
		

Crossrefs

Programs

  • Maple
    A := (n, k) -> n*k*(4 + n*(k - 1))/2:
    for n from 0 to 7 do seq(A(n, k), k = 0..7) od;

Formula

A(n, k) = n*k*(4 + n*(k - 1))/2.
T(n, k) = k*(n - k)*(4 + k*(n - k - 1))/2.
A(n, k) = A361682(n, k) - 1.

A384616 A(m,n) is the maximum sum of absolute differences of the labels of adjacent vertices of the grid graph P_m X P_n where the m*n labels are exactly 1, 2, ..., m*n.

Original entry on oeis.org

0, 1, 8, 3, 23, 58, 7, 44, 115
Offset: 1

Views

Author

Sela Fried, Jun 07 2025

Keywords

Comments

A(m, n) ~ Theta((m*n)^2) (see link).

Examples

			Array begins (values in parentheses are conjectural):
  [1]  0
  [2]  1    8
  [3]  3   23    58
  [4]  7   44   115   (216)
  [5] 11   71  (182)  (347)  (554)
  [6] 17  104  (271)  (508)  (815) (1192)
  [7] 23  143  (370)  (699) (1118) (1639) (2250)
  [8] 31 (188) (491)  (920) (1475) (2156) (2963) (3896)
  [9] 39 (239) (622) (1171) (1874) (2743) (3766) (4955) (6298)
		

Crossrefs

Column 1 is A047838.
Cf. A067725.

Programs

  • Python
    import itertools
    import numpy as np
    def max_difference_sum(m, n):
        nums = list(range(1, m * n + 1))
        max_sum = 0
        best_matrix = None
        for perm in itertools.permutations(nums):
            matrix = np.array(perm).reshape((m, n))
            diff_sum = np.sum(np.abs(matrix[:,1:]-matrix[:,:-1])) + np.sum(np.abs(matrix[1:,:]-matrix[:-1,:]))
            if diff_sum > max_sum:
                max_sum = diff_sum
                best_matrix = matrix.copy()
        return max_sum, best_matrix
    for m in range(1, 10):
        for n in range(1, m+1):
            max_sum, best = max_difference_sum(m, n)
            print(max_sum, end=', ')

Formula

Conjecture: A(m,2) = A067725(m-1) - 1.
Previous Showing 21-23 of 23 results.