cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A225193 Composite numbers such that every non-identity permutation gives a prime.

Original entry on oeis.org

14, 16, 20, 30, 32, 34, 35, 38, 50, 70, 74, 76, 91, 92, 95, 98, 110, 118, 119, 133, 772, 775, 778, 779, 1118, 3337, 7771, 77779
Offset: 1

Views

Author

Jayanta Basu, May 01 2013

Keywords

Examples

			772 is a member since both 727 and 277 are primes.
		

Crossrefs

Programs

  • Mathematica
    t={}; Do[p=Permutations[IntegerDigits[n]]; c=Length[p]; cn=Length[Select[Table[FromDigits[k],{k,p}], PrimeQ]]; If[!PrimeQ[n] && c>1 && cn==c-1, AppendTo[t,n]], {n,10,100000}]; t
  • Python
    from sympy import isprime
    from itertools import count, islice, permutations
    def agen(): yield from (k for k in count(1) if len(set(s:=str(k)))!=1 and not isprime(k) and all((t:=int("".join(m)))==k or isprime(t) for m in permutations(s)))
    print(list(islice(agen(), 28))) # Michael S. Branicky, Dec 29 2023

A327822 Numbers k such that when cyclically permuting the digits of k any number of times, any prime obtained is followed by a composite number and vice-versa.

Original entry on oeis.org

14, 16, 19, 20, 23, 29, 30, 32, 34, 35, 38, 41, 43, 47, 50, 53, 59, 61, 67, 70, 74, 76, 83, 89, 91, 92, 95, 98, 1015, 1018, 1070, 1075, 1099, 1132, 1136, 1163, 1216, 1238, 1274, 1303, 1321, 1339, 1361, 1475, 1510, 1517, 1535, 1570, 1574, 1612, 1630, 1631, 1636
Offset: 1

Views

Author

Felix Fröhlich, Sep 26 2019

Keywords

Examples

			When cyclically permuting the digits of 961990 one gets the numbers 961990, 619909, 199096, 990961, 909619, 96199 and these numbers are composite, prime, composite, prime, composite, prime, respectively, so 961990 (and each of these cyclic permutations except 96199) is a term of the sequence.
A more graphical representation:
       961990              C
      /      \           /   \
  096199   619909       P     P
     |        |         |     |
  909619   199096       C     C
      \      /           \   /
       990961              P
		

Crossrefs

Programs

  • PARI
    eva(n) = subst(Pol(n), x, 10)
    rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v
    is(n) = my(nn=#Str(n), u=[], v=vector(nn, x, x%2==0), w=vector(nn, x, x%2==1), d=digits(n), r=rot(d)); if(nn%2==1, return(0)); u=concat(u, [ispseudoprime(eva(d))]); u=concat(u, ispseudoprime(eva(r))); while(1, r=rot(r); if(r==d, if(u==v || u==w, return(1)); return(0)); u=concat(u, ispseudoprime(eva(r))))
Previous Showing 21-22 of 22 results.