cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A372965 a(n) = Sum_{k = 1..n} ( n/gcd(k, n) )^4.

Original entry on oeis.org

1, 17, 163, 529, 2501, 2771, 14407, 16913, 39529, 42517, 146411, 86227, 342733, 244919, 407663, 541201, 1336337, 671993, 2345779, 1323029, 2348341, 2488987, 6156503, 2756819, 7815001, 5826461, 9605467, 7621303, 19803869, 6930271, 27705631, 17318417, 23864993
Offset: 1

Views

Author

Seiichi Manyama, May 18 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(5*e+5) - p^(5*e+4) + p^4 - 1)/(p^5-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^4*sigma(d, 5));
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d^5));

Formula

a(n) = Sum_{d|n} mu(n/d) * (n/d)^4 * sigma_5(d).
a(n) = Sum_{d|n} d^(5-m) * phi(d^m) for m > 0.
G.f.: Sum_{k>=1} k^(5-m) * phi(k^m) * x^k/(1 - x^k) for m > 0.
From Amiram Eldar, May 21 2024: (Start)
Multiplicative with a(p^e) = (p^(5*e+5) - p^(5*e+4) + p^4 - 1)/(p^5-1).
Dirichlet g.f.: zeta(s)*zeta(s-5)/zeta(s-4).
Sum_{k=1..n} a(k) ~ c * n^6 / 6, where c = zeta(6)/zeta(2) = 2*Pi^4/315 = 0.6184704192... (1/A157292). (End)

A349469 Dirichlet g.f.: Sum_{n>0} a(n)/n^s = zeta(s-1)*zeta(s-3)/(zeta(s-2))^2.

Original entry on oeis.org

1, 2, 12, 20, 80, 24, 252, 168, 360, 160, 1100, 240, 1872, 504, 960, 1360, 4352, 720, 6156, 1600, 3024, 2200, 11132, 2016, 10400, 3744, 9828, 5040, 22736, 1920, 27900, 10912, 13200, 8704, 20160, 7200, 47952, 12312, 22464, 13440, 65600, 6048, 75852, 22000, 28800, 22264, 99452, 16320, 88200, 20800
Offset: 1

Views

Author

Werner Schulte, Nov 18 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p - 1)*p^e*(p^(2*e) - 1)/(p + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 18 2021 *)

Formula

Multiplicative with a(p^e) = p^e * (p^(2*e)-1) * (p-1) / (p+1) for e > 0 and prime p.
Dirichlet convolution with A057660 equals A068963.
Equals n * A340850(n) for n > 0.
Dirichlet inverse b(n) for n > 0 is multiplicative with b(1) = 1 and
b(p^e) = -(p-1)^2 * e * p^(2*e-1) for prime p and e > 0.
Sum_{k=1..n} a(k) ~ c * n^4, where c = 9*zeta(3)/Pi^4 = 0.111062... . - Amiram Eldar, Oct 16 2022
Previous Showing 11-12 of 12 results.