A136538
Numbers n such that reversal(n)=2*phi(n).
Original entry on oeis.org
2, 4, 8, 42, 84, 2763, 4032, 8064, 67314, 86558, 291483, 2700063, 2700000063, 4039603962, 46420566582, 6739054689866
Offset: 1
Reversal(42)=24=2*12=2*phi(42), so 42 is in the sequence. [Example corrected Jan 25 2008]
A113622
Numbers k such that the reverse of the representation of phi(k) is a substring of k, in base 10.
Original entry on oeis.org
1, 21, 63, 270, 291, 1065, 2991, 6102, 10087, 10279, 10654, 16528, 144069, 1440069, 10253179, 10657654, 14400069, 16163608, 46676013, 69460293, 2346534651, 2369436474, 6313047393, 10270341004, 10657657654, 14406534069, 23400000651
Offset: 1
-
lst = {}; Do[If[{}!= StringPosition[ToString@n, StringReverse@ToString@EulerPhi@n], AppendTo[lst, n]], {n, 2*10^7}]; lst
A097644
Numbers n such that pi(n) = reversal(n).
Original entry on oeis.org
51, 130, 370, 8201, 73270, 82080, 26113610, 4854248220, 37682961610
Offset: 1
26113610 is in the sequence because
pi(26113610) = 1631162 = reversal(26113610).
Comments